Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Гидроаэродинамика, горение и теплообмен»

Курс лекций «Модели физико-химической ГГД и турбулентности. Вихреразрешающие подходы» (http://cfd.spbstu.ru/agarbaruk/lecture/SRS_methods)

Метод Моделирования Отсоединенных Вихрей

Detached Eddy Simulation (DES)

Гарбарук Андрей Викторович (agarbaruk@mail.ru) 2019 г.

Содержание

- 1. Идея DES
- 2. Реализация DES
 - DES на основе SA модели
 - DES на базе других моделей (SST-DES)
- 3. Особенности применения DES
 - Построение сетки для DES
 - Гибридные схемы
- 4. Примеры применения DES-97
- 5. Недостатки DES-97

 Это стимулировало поиск новых подходов и привело к созданию в 1997 году Метода Моделирования Отсоединенных Вихрей (Detached-Eddy Simulation – DES)

Идея DES

- Одна "базовая" RANS модель, которая работает
 - ➢ В режиме RANS только в областях потока, где сетка недостаточна для разрешения турбулентных структур (∆> L_{turb})
 - ≻ В режиме LES в остальной части потока ($\Delta < L_{turb}$)
- Для пристенных отрывных течений это означает

<u>LES</u>

Только в отрывных областях, населенных относительно крупными ("отсоединенными") вихрями, для разрешения которых вычислительные затраты LES приемлемы

RANS

Только в присоединенных областях, населенных мелкими вихрями, для разрешения которых в рамках LES нужны очень мелкие сетки, а RANS является достаточно надежным и "дешевым" подходом

На что нацелен DES

В методе DES основной причиной появления турбулентных структур является неустойчивость потока

- Течения, для которых предназначен DES (неустойчивые течения)
 - о Обтекание плохообтекаемых тел
 - > Даже в случае URANS получается нестационарное решение
 - ✓ Не требуются нестационарные граничные условия
 - ✓ Развитие «новой» турбулентности в отрывной зоне
- Течения, в которых DES переходит в RANS (устойчивые пристанные течения)
 - о Присоединенный пограничный слой
 - Самопроизвольное развитие разрешенных турбулентных структур невозможно
- Течения, для которых DES не предназначен (слабо неустойчивые течения)
 - о Слой смешения
 - Естественное развитие турбулентных структур возможно, но происходит очень медленно

Типичные задачи для DES

Течения с большой отрывной зоной

- Широко распространенные задачи
 - ➢ Обтекание плохообтекаемых тел
 - ✓ Обтекание зданий (расчет ветровой нагрузки)
 - ✓ Поезд/автомобиль (особенно при наличии бокового ветра)
 - 🗸 Зеркала заднего вида
 - ✓ Возвращаемые космические модули
 - ✓ Шасси самолета
 - 🗸 Крылья при больших углах атаки
 - 🗸 Каверны

✓ …

- Часто RANS (или URANS) не обеспечивает необходимой точности
 - Крупные вихри (когерентные структуры) сильно зависят от формы обтекаемого тела

Реализация DES

DES модель может быть легко получена из базовой RANS модели путем замены линейного масштаба турбулентности RANS следующим гибридным линейным масштабом:

$l_{DES} = min(l_{RANS}, C_{DES}\Delta)$

- I_{RANS} линейный масштаб RANS модели
- ≻ ∆ максимальный локальный шаг сетки

$$\Delta = \max(\Delta_x, \Delta_y, \Delta_z)$$

C_{DES} - единственная новая эмпирическая константа DES, которая имеет порядок единицы

Пример: DES, основанный на SA модели

SA RANS модель

В этой модели линейный масштаб равен расстоянию до стенки

$$l_{RANS} = d_{w}$$

Подсеточная версия SA модели

Может быть легко получена из RANS модели путем замены линейного масштаба RANS (d_w) линейным масштабом LES $C_{DES}\Delta$:

$$l_{RANS} = d_w \Longrightarrow l_{LES} = C_{DES}\Delta, \quad \Delta = \max\{\Delta_x, \Delta_y, \Delta_z\}$$

Диссипация подсеточной версии модели принимает вид:

$$\left(C_{w1}f_{w} - \frac{C_{b1}}{\kappa^{2}}f_{t2}\right)\left(\frac{\widetilde{\nu}}{d_{w}}\right)^{2} \Longrightarrow \left(C_{w1}f_{w} - \frac{C_{b1}}{\kappa^{2}}f_{t2}\right)\left(\frac{\widetilde{\nu}}{C_{DES}\Delta}\right)^{2}$$

В "равновесии", когда генерация равна диссипации, эта модель эквивалентна модели Смагоринского $v_t = (C_S \Delta)^2 S$

$$C_{b1}(1-f_{t2})\widetilde{S}\widetilde{v} = \left(C_{w1}f_w - \frac{C_{b1}}{\kappa^2}f_{t2}\right)\left(\frac{\widetilde{v}}{C_{DES}\Delta}\right)^2 \underset{f_{t2}=0, f_w=f_{w,eq}, \widetilde{v}=v_t}{\Longrightarrow} v_t = \frac{C_{b1}}{C_{w1}f_{w,eq}}\left(C_{DES}\Delta\right)^2 \widetilde{S}$$

Сшивка RANS и SGS ветвей

В соответствии с общим определением DES, сшивка RANS и LES ветвей осуществляется следующим образом:

Калибровка константы *С*_{DES}

Также как и при калибровке любой LES модели, константа C_{DES} должна обеспечивать корректное поведение энергетического спектра в однородной изотропной турбулентности

Вырождение однородной изотропной турбулентности: поле скоростей и завихренности

Калибровка константы *С*_{DES}

Расчеты выполнены по центрально-разностной схеме четвертого порядка

Влияние расчетной сетки

DES на базе других моделей

По аналогии с SA моделью, DES подход может быть построен на основе других моделей (не обязательно с одним уравнением).

- В формулировке DES вместо линейного масштаба d_w следует использовать соответствующий линейный масштаб выбранной модели l_{RANS}
 - > Всегда присутствует в модели (явно или неявно)

$$l_{DES} = \min\{l_{RANS}, C_{DES}\Delta\} \qquad \Delta = \max\{\Delta_x, \Delta_y, \Delta_z\}$$

• Вблизи стенки $l_{RANS} = O(d_w)$ и поэтому:

DES на базе других моделей

- В большинстве RANS моделей линейный масштаб *l_{RANS}* не присутствует в явном виде
 - ▶ Его можно выразить через основные переменные модели
 - > Например, в *k*- ω моделях $l_{RANS} = k^{1/2} / (C_{\mu}\omega)$
- Различные слагаемые в уравнениях переноса могут быть записаны с использованием линейного масштаба
 - В зависимости от формы записи уравнений процедура перехода к гибридной модели может быть выполнена различными способами.
 - Различные версии DES формально будут иметь разную RANS-LES границу.
- Полученная гибридная модель должна переходить в «правильный» LES
 - ≻ В "равновесии" (генерация равна диссипации) модель должна переходить в модель Смагоринского v_t = (C_S∆)²S

Пример: DES на основе k-ω модели SST

<u>k-w SST RANS модель</u>

$$\rho \frac{Dk}{Dt} = \nabla \bullet ((\mu + \sigma_k \mu_T) \nabla k) + P_k - \rho \beta^* \omega k$$

$$\rho \frac{D\omega}{Dt} = \nabla \bullet ((\mu + \sigma_\omega \mu_T) \nabla \omega) + \frac{\omega}{k} P_k - \rho \beta \omega^2 + (1 - F_1) D_{k\omega}$$

$$P_k = -\tau_{ij} \frac{\partial U_i}{\partial x_j} = \mu_T S^2 \qquad \mu_T = \rho \frac{a_1 k}{\max(a_1 \omega, \Omega F_2)}$$

$$\phi = F_1 \phi_1 + (1 - F_1) \phi_2, \phi = \{\sigma_k, \sigma_\omega, \beta\}$$

$$CD_{k\omega} = \max(D_{k\omega}, 10^{-20}), D_{k\omega} = \frac{2\rho \sigma_{\omega 2}}{\omega} (\nabla k) \bullet (\nabla \omega)$$

$$F_1 = \tanh(\arg_1^4), \arg_1 = \min\left[\max\left(\frac{\sqrt{k}}{0.09\omega d}, \frac{500\nu}{d^2\omega}\right), \frac{4\rho \sigma_{\omega 2} k}{CD_{k\omega} d^2}\right]$$

$$F_2 = \tanh(\arg_2^2), \arg_2 = \max\left(\frac{2\sqrt{k}}{0.09\omega d}, \frac{500\nu}{d^2\omega}\right)$$

Пример: DES на основе k-ω модели SST

• Линейный масштаб можно выразить через k и ω

 $l_{RANS} = k^{1/2} / (\beta^* \omega)$

 Используя такое определение линейного масштаба можно преобразовать разные слагаемые модели, причем каждое слагаемое можно выразить несколькими способами

$$D_{RANS}^{k} = \beta^{*} \rho \omega k = \rho k^{3/2} / l_{RANS}$$

$$V_{T} = \frac{a_{1}k}{\max(a_{1}\omega, \Omega F_{2})} = \min\left(\frac{a_{1}\omega}{\Omega F_{2}}, 1\right) \cdot \frac{k}{\omega}$$

$$D_{RANS}^{\omega} = \beta \rho \omega^{2} = \frac{\beta}{\beta^{*}} \rho \omega \frac{k^{1/2}}{l_{RANS}} = \frac{\beta}{\beta^{*2}} \rho \frac{k}{l_{RANS}^{2}}$$

$$\frac{k}{\omega} = \beta^{*} \sqrt{k} \cdot l_{RANS} = \left(\beta^{*} \cdot l_{RANS}\right)^{2} \omega$$

• Самый простой (но не единственный) путь перехода к DES версии это выделение линейного масштаба в диссипативном члене *k*-уравнения:

$$D_{RANS}^{k} = \beta^{*} \rho \alpha k = \rho k^{3/2} / l_{RANS} \implies D_{DES}^{k} = \rho k^{3/2} / l_{DES} \qquad l_{DES} = \min\{l_{RANS}, (C_{DES}\Delta)\}$$

 Когда шаг сетки, ∆ → 0, диссипативный член в LES области сильно возрастает и подсеточная вязкость падает

Пример: DES на основе k-ω модели SST

Калибровка констант

SST модель состоит из двух ветвей которые надо калибровать независимо друг от друга.

Особенности применения DES

Построение сетки для DES

При построении сетки для DES необходимо принимать во внимание то, в каком режиме должен функционировать DES в той или иной области. Можно выделить следующие области

- Область невязкого потока (Euler Region ER)
 - > Сетка должна быть достаточна для разрешения особенностей течения
 - ✓ Глобальное изменение давления
 - 🗸 Ударные волны
- Область RANS (RANS Region RR)
 - ➤ Типичные требования к RANS сеткам
 - ✓ Шаг сетки сгущается к стенке
 - ✓ $\Delta y_{1}^{+} \sim 1, \Delta y_{n+1} / \Delta y_{n} < 1.3$
 - ✓ Продольный шаг сетки ~δ_{BL}
- Существенную для течения область LES (Focus Region FR)
 - > Сетка должна быть достаточно мелкой для разрешения вихрей
 - ≻ Шаг сетки по возможности однороден во всех направлениях
- Область выноса турбулентных структур (Departure Region DR)
 - Загрубление сетки от FR к ER
 - ✓ Должно производиться постепенно и не вызвать сильных возмущений

Пример сетки для DES

ERОбласть невозмущенного
потокаRRОбласть решения
уравнений РейнольдсаDRОбласть выноса
сформированных структурFRОбласть моделирования
крупных вихрей

Сетка для расчета обтекания самолета при больших углах атаки методом DES

Гибридные схемы

- Важно использовать подходящую схему
 - > B RANS используются устойчивые противопоточные схемы
 - ✓ Эти схемы слишком диссипативны для LES
 - > LES необходимо проводить с использованием низкодиссипативных схем
 - Они могут оказаться неустойчивыми в областях больших градиентов в RANS

- Необходимо использовать различные схемы в различных областях
 - > Такая схема для невязкого потока *F* записывается как:

$$F = (1 - \sigma) \cdot F_{CTR} + \sigma \cdot F_{UPW}$$

где σ - это эмпирическая весовая функция

Гибридная схема для DES

Весовая функция (вес противопоточной схемы) построена на отношении двух линейных масштабов:

 $\sigma = \max\{\sigma_{\min}, \sigma_{\max} \tanh(A^{C_{H1}})\}$

 $A = C_{H2} \max\{[(C_{DES}\Delta/l_t)/g - 0.5], 0\},\$

- сеточного $C_{DES}\Delta$
- масштаба турбулентности $l_t = [(v_t + v)/(C_{\mu}^{3/2}K)]^{1/2}$

$$K = \max\{[(S^{2} + \Omega^{2})/2]^{1/2}, 0.1\tau_{0}^{-1}\} \quad \tau_{0} = L_{0}/U_{0}$$

Функция $g = tanh(B^4)$ предотвращает включение центральноразностной схемы в областях, где отсутствует разрешенная турбулентность

$$B = C_{H3}\Omega \max\{S, \Omega\} / \max\{(S^2 + \Omega^2) / 2, \Omega_{\min}^2\}, \quad \Omega_{\min} = 10^{-3}\tau_0^{-3}$$
$$\sigma_{\max} = 1.0, \ C_{H1} = 3.0, \ C_{H2} = 1.0, \ C_{H3} = 2.0$$

Гибридная схема для DES

Надо понимать, что:

- DES, как и LES, это трехмерный нестационарный подход.
- Разрешение в LES области должно быть не хуже чем в настоящем LES
 - Экономия ресурсов достигается только за счет RANS сетки в пристенной области.
- Так же как и в LES, времена расчета для получения хорошей статистики должны быть достаточно большими.
 - Экономия времени счета достигается за счет большего шага по времени (не требуется разрешать тонкий пограничный слой).

Примеры применения DES-97

Обтекание профиля NACA 0012 при Re=10⁵

- Первое применение DES
- DES дает стационарное RANS решение вплоть до углов атаки за которыми начинается массированный отрыв (stall angle)
- После начала массированного отрыва DES хорошо предсказывает значение C_d и C_l на сетке в 400,000 узлов
 - ➤ 2D URANS дает завышение
- Результаты DES почти не зависят то базовой модели турбулентности

Обтекание цилиндра при Re=50,000

Докритический режим

Коэффициент сопротивления

 Классический пример, простая геометрия, хороший тест для CFD.

Обтекание цилиндра при Re=50,000

Сравнение различных подходов

Расчет обтекания цилиндра в прямоугольном канале при Re=1.4·10⁵, Mockett, Thiele (2007)

Расчет обтекания цилиндра в прямоугольном канале при Re=1.4·10⁵, Mockett, Thiele (2007)

Осредненные по фазе изолинии завихренности

— PIV

- · DES

<u>SST-DES кубика в канале</u> Menter, Kunz (2002); CFX Code

expt. of Martinuzzi & Tropea (1993)

• Хорошие результаты при использовании коммерческого кода

Delta Wing with 70° sweep at 27° angle of attack

<u>Morton, Forsythe, Mitchell, Hajek (2002);</u> <u>Cobalt unstructured code (2nd-order upwind)</u>

Re ~10⁶, Experiments of ONERA

Хорошо видна нестабильность сдвигового слоя и его скручивание

Расчет F-15 при большом угле атаки

Forsythe, Squires, Wurtzler, Spalart (2002); Cobalt code

Получено хорошее совпадение (с точностью около 6%) по сопротивлению и подъемной силе

Недостатки DES-97

В процессе активного использования DES с 1997 года были выявлены следующие недостатки:

- Неправильное поведение подсеточной вязкости при использовании DES основанного на низкорейнольдсовых RANS моделях
 - В эти модели включены функции, которые подавляют вязкость в вязком подслое и переходной области пограничного слоя
 - ✓ В случае, когда $v_t/v \rightarrow 1$ происходит их ложное срабатывание
- Неправильная работа при излишне подробных сетках в пограничном слое
 - ➢ При C_{DES}∆ < d_w переключение между RANS и LES происходит внутри пограничного слоя в области больших градиентов

✓ Точность решения снижается (Modeled Stress Depletion - MSD), а при неудачном стечении обстоятельств может образоваться ложный отрыв (Grid Induced Separation – GIS)

- Зачастую появление развитой турбулентности в слое смешения происходит с задержкой
 - > Это приводит к существенной потере точности решения

<u>Резюме</u>

- Метод моделирования отсоединенных вихрей (DES) простейший и очень эффективный гибридный подход
 - ➢ В присоединенном пограничном слое реализуется метод RANS
 - ➢ В отрывной зоне DES функционирует в LES моде
- DES ориентирован на расчет массивно-отрывных течений
 - Именно при расчете таких течений его преимущества проявляются наиболее ярко
- В процессе эксплуатации оригинальной версии (DES-97) метода был выявлен ряд недостатков и проблем
 - > Это стимулировало дальнейшее развитие метода DES
 - ✓ Появились новые версии метода, свободные от этих недостатков