Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Гидроаэродинамика, горение и теплообмен»

Курс лекций «Модели физико-химической ГГД и турбулентности. Вихреразрешающие подходы» (http://cfd.spbstu.ru/agarbaruk/lecture/SRS_methods)

Развитие метода DES

Гарбарук Андрей Викторович (agarbaruk@mail.ru) 2019 г.

Содержание

- 1. Недостатки DES-97
- 2. Модификации метода DES
 - Решение никорейнольдсовой проблемы
 - Meтoд DDES
 - Задержка появления развитой турбулентности в слое смешения

Недостатки DES-97

В процессе активного использования DES с 1997 года были выявлены следующие недостатки:

- Неправильное поведение подсеточной вязкости при использовании DES основанного на низкорейнольдсовых RANS моделях
 - В эти модели включены функции, которые подавляют вязкость в вязком подслое и переходной области пограничного слоя
 - ✓ В случае, когда $v_t/v \rightarrow 1$ происходит их ложное срабатывание
- Неправильная работа при излишне подробных сетках в пограничном слое
 - ➢ При C_{DES}∆ < d_w переключение между RANS и LES происходит внутри пограничного слоя в области больших градиентов

✓ Точность решения снижается (Modeled Stress Depletion - MSD), а при неудачном стечении обстоятельств может образоваться ложный отрыв (Grid Induced Separation – GIS)

- Зачастую появление развитой турбулентности в слое смешения происходит с задержкой
 - > Это приводит к существенной потере точности решения

Низкорейнольдсовая проблема

Низкорейнольдсовые функции

Модель Спаларта-Аллмареса содержит несколько функций, обеспечивающих правильное поведение турбулентной вязкости в пограничном слое

$$\begin{split} \frac{D\tilde{v}}{Dt} &= Diffusion + C_{b1} (1 - f_{t2}) \widetilde{S} \widetilde{v} - \left(C_{wl} f_{w} + \frac{C_{b1}}{\kappa^{2}} f_{t2} \right) \left(\frac{\widetilde{v}}{d_{w}} \right)^{2} \\ v_{t} &= f_{vl} \widetilde{v}, \ f_{v1} = \frac{\chi^{3}}{\chi^{3} + C_{v1}^{3}}, \ \chi = \frac{\widetilde{v}}{v} \\ \widetilde{S} &= \sqrt{2\Omega_{ij}\Omega_{ij}} + \frac{\widetilde{v}}{\kappa_{2} d_{w}} f_{v2} \ f_{v2} = 1 - \frac{\chi}{1 + \chi f_{v1}} \\ f_{w} &= g \left(\frac{1 + C_{w3}^{6}}{g^{6} + C_{w3}^{6}} \right)^{\frac{1}{6}}, \ g = r + C_{w2} \left(r^{6} - r \right), \ r = \frac{\widetilde{v}}{\widetilde{S} \kappa^{2} d^{2}} \qquad f_{t2} = C_{t3} \exp\left(- C_{t4} \chi^{2} \right) \end{split}$$

- Функции $f_{v1}, f_{v2}, f_{t2}, f_w$ зависят от уровня подсеточной вязкости и могут срабатывать в LES области
 - Поведение подсеточной модели при измельчении сетки будет неправильным
 - ✓ Снижается точность метода в LES области

Вырождение однородной изотропной турбулентности

 Такая картина получается если применить стандартную низкорейнольдсувую версию SA SGS модели.

SA SGS модель (низкорейнольдсовая версия)

Это происходит потому, что стандартная SA SGS модель переходит в равновесии не в модель Смагоринского $v_t^{LR} = (C_{SMAG} \cdot \Delta)^2 S$

Модель Смагоринского

$$C_{b1}(1-f_{t2})\widetilde{S}\widetilde{v} = \left(C_{w1}f_{w} - \frac{C_{b1}}{\kappa^{2}}f_{t2}\right)\left(\frac{\widetilde{v}}{C_{DES}\Delta}\right)^{2} \underset{f_{t2}=0, f_{w}=f_{w,eq}, \widetilde{v}=v_{t}}{\Rightarrow} v_{t} = \frac{C_{b1}}{C_{w1}f_{w,eq}}\left(C_{DES}\Delta\right)^{2}\widetilde{S}$$

ав $v_{t}^{LR} = \left(C_{SMAG} \cdot f_{LR}(\chi) \cdot \Delta\right)^{2}S$ где $f_{LR}(\chi) = F(f_{v1}, f_{v2}, f_{t2}, f_{w})$ $\chi = \frac{\widetilde{v}}{v}$

Низкорейнольдсовая проблема

- Существует однозначная зависимость функции *f*_{LR} от турбулентной вязкости
 - > Оба этих параметра зависят от $\chi = \frac{v}{v}$

$$f_{LR}(\chi) = F(f_{v1}, f_{v2}, f_{t2}, f_{w})$$

$$\frac{v_t}{v} = f_{v1} \chi, f_{v1} = \frac{\chi^3}{\chi^3 + C_{v1}^3}$$

- ≻ При $v_t / v > 15$ величина $f_{LR} \approx 1$
- \blacktriangleright При $v_t / v < 15$ величина f_{LR} заметно меньше 1
- Калибровка S-A SGS модели производилась по высокорейнольдсовой версии, то есть при $\chi \to \infty$
 - Необходимо ввести коррекцию для низких значений v_t /v

<u>Решение низкорейнольдсовой проблемы</u>

• Коррекция должна восстанавливать поведение подсеточной вязкости аналогично модели Смагоринского

$$v_t^{LR} = (C_{SMAG} \cdot f_{LR}(\chi) \cdot \Delta)^2 S \implies v_t = (C_{SMAG} \cdot \Delta)^2 S$$

> Это можно сделать следующим образом

$$v_{t} = v_{t}^{LR} \cdot \Psi^{2}; \Psi^{2} = 1/f_{LR}^{2}$$

$$\Psi^{2} = \frac{1 - c_{b1}[f_{t2} + (1 - f_{t2})f_{v2}]/(c_{w1}\kappa^{2}f_{w}^{*})}{(1 - f_{t2})f_{v1}}; f_{w}^{*} = 0.42$$

- ≻ Для того, чтобы это реализовать, необходимо модифицировать линейный масштаб LES
 С_{DES}∆ → ΨC_{DES}∆
- Масштаб DES изменится соответственно

$$l_{DES} = \min\{d_w, C_{DES}\Delta\} \quad \Longrightarrow \quad l_{DES} = \min\{d_w, \Psi C_{DES}\Delta\}$$

- Для каждой модели требуется своя поправка
 - Если в модели нет низкорейнольдсовых членов, то никакой модификации не требуется
 - ✓ Модель Ментера SST

Низкорейнольдсовая коррекция (результат работы)

• Вырождение однородной изотропной турбулентности

 Результат для откорректированной и высокорейнольдсовой моделей очень близок, но не не идентичен

> Различия несущественны

Низкорейнольдсовая проблема (модель Wilcox, 1993)

$$\begin{split} \frac{Dk}{Dt} &= v_t S^2 - \beta^* k \omega + \nabla \cdot \left(\left(v + \sigma_k v_t \right) \nabla k \right) \\ v_t &= \alpha^* \frac{k}{\omega} \\ \frac{D\omega}{Dt} &= \alpha \frac{\omega}{k} v_t S^2 - \beta \omega^2 + \nabla \cdot \left(\left(v + \sigma_\omega v_t \right) \nabla \omega \right) + \frac{\sigma_d}{\omega} \left(\nabla k \right) \cdot \left(\nabla \omega \right) \\ \alpha^* &= \frac{\alpha_0^* + \operatorname{Re}_t / R_k}{1 + \operatorname{Re}_t / R_k}, \ \alpha &= \frac{1}{2\alpha^*} \frac{\alpha_0 + \operatorname{Re}_t / R_\omega}{1 + \operatorname{Re}_t / R_\omega}, \ \beta^* = C_\mu \frac{5/18 + \left(\operatorname{Re}_t / R_\beta \right)^4}{1 + \left(\operatorname{Re}_t / R_\beta \right)^4} \\ \sigma_k &= 1.0, \ \sigma_\omega &= 0.6, \ \beta &= 0.075, \ \alpha_0^* &= \beta/3, \ \alpha_0 &= 0.1, \\ C_\mu &= 0.09, \ R_\beta &= 8, \ R_k &= 6, \ R_\omega &= 2.2. \end{split}$$
• Низкорейнольдсовые слагаемые $\alpha^*, \alpha, \beta^*$ зависят от турбулентного числа Рейнольдсовые слагаемые $\alpha^*, \alpha, \beta^*$

$$l_{DES} = \min\{l_{RANS}, (\Psi \cdot C_{DES}\Delta)\} \qquad \qquad \Psi = \Psi(\operatorname{Re}_t) = \frac{p}{C_{\mu}} \left(\frac{2\alpha}{\alpha^*}\right)$$
$$l_{RANS} = k^{1/2} / (C_{\mu}\omega) \qquad \qquad \Psi \to 1.0 \text{ at } \operatorname{Re}_t \to \infty$$

 $\mathcal{V}(\mathcal{O})$

Неправильное поведение DES при измельчении сетки в пограничном слое

Неправильное поведение DES

при измельчении сетки

- Промежуточные сетки могут возникнуть из-за измельчения сетки или уменьшения толщины ПС
 - > Продольный шаг сетки заметно меньше, чем в обычной RANS сетке
 - > Шаг сетки еще недостаточен для проведения качественного LES
- Метод DES начинает работать в незапланированном режиме в ПС
 - ≻ Переключение от RANS к LES происходит внутри ПС
 - Турбулентная вязкость уменьшается (Modeled Stress Depletion MSD), а пульсаций (разрешенных Рейнольдсовых напряжений) недостаточно
 - ✓ При неблагоприятном градиенте давления может возникнуть ложный отрыв (GIS)
- Необходимо запретить переключаться к LES внутри пограничного слоя
 - Нужен локальный критерий принадлежности точки потока к ПС
 - ✓ Это могут быть функции F_1 или F_2 модели Ментера или их аналоги

Delayed Detached Eddy Simulations (DDES)

- Для «защиты» пограничного слоя от LES необходима функция «детектор» f_{d}
 - > Должна быть нулем в присоединенном пограничном слое
 - ≻ Должна быть единицей вне ПС
- Вместо линейного масштаба в методе DES

$$l_{DES} = \min\{l_{RANS}, C_{DES} \cdot \Psi \cdot \Delta\}$$

необходимо использовать новый масштаб (DDES)

$$l_{DDES} = \min\{l_{RANS}, (1 - f_d) \cdot l_{RANS} + (f_d) \cdot C_{DES} \Psi \Delta\}$$

который можно переформулировать как

$$l_{DDES} = l_{RANS} - f_d \max\{0, (l_{RANS} - C_{DES} \Psi \Delta)\}$$

≻ Внутри погранчиного слоя f_d=0

$$l_{DDES} = l_{RANS}$$

> Вне пограничного слоя $f_d=1$

$$l_{DDES} = \min\{l_{RANS}, C_{DES} \cdot \Psi \cdot \Delta\}$$

Построение функции *f*_d

- Локальные «детекторы» принадлежности к пограничному слою обычно строятся на соотношении полученного решения и автомодельного решения для логарифмической области ПС
 - В данном случае используется соотношение турбулентной вязкости с моделью Прандтля $r_d = (v + v_t) / \{\kappa^2 d_w^2 \cdot [\sum (\partial u_i / \partial x_j)^2]^{1/2}\}$
 - Важно понимать, что если вязкость по каким-либо причинам занижена, это критерий не работает
- Построенная функция $f_d = 1 \tanh[(C_{d1}r_d)^{C_{d2}}]$ была откалибрована для модели SA: $C_{d1} = 8, C_{d2} = 3$
- Стационарный пограничный слой
 - DDES решение практически не отличается от RANS
 В отличие от DES 97
- В методе DDES переключение между RANS и LES определяется не только шагом сетки, но и решением

Построение функции <u>f</u>

- При построении функции f_d должен быть соблюден компромисс
 - > Защита пограничного слоя
 - ≻ Слабое влияние на LES в отрывной зоне
 - ✓ Использование функции F₂ из модели Ментера SST приводит к стационарному течению при обтекании обратной ступеньки
- Для каждой модели функцию необходимо калибровать отдельно
 - DDES на базе модели SST

SST DDES

- Проверка перекалиброванной функции (при C_d=20)
 - Не препятствует сворачиванию слоя смешения и появлению неустойчивости
 - Обеспечивает такое же распределение коэффициента трения, как и C_d=8

SA DDES трехэлементного профиля

Профили скорости и турбулентной вязкости в сечении А выше профиля

Задержка появления развитой турбулентности в слое смешения

Задержка появления развитой турбулентности в слое смешения

- Использование DES приводит к существенной задержке появления разрешенной турбулентности в слое смешения
 - Следствием этого, например, является большая погрешность расчета характеристик потока и шума струи

Причины появления проблемы

- В реальной струе турбулизация слоя смешения существенно зависит от мелкомасштабной турбулентности
 - Турбулентные вихри, пришедшие из пограничного слоя, расположенного вверх по потоку
 - Неустойчивость слоя смешения (Кельвина-Гельмгольца)
- B LES эти структуры практически невозможно разрешить
 - > Для разрешения столь мелких структур нужна очень подробная сетка
 - ✓ Uzun для уменьшенного в 10 раз числа Рейнольдса использовал сетку 300 миллионов
 - Необходимо задавать разрешенную турбулентность, приходящую из пограничного слоя
- Нужно ускорить переход к развитой турбулентности
 - Это не моделирование физических процессов, а вычислительный прием, позволяющий быстро получить качественно правильное решение вниз по потоку
 - ✓ Когда появится развитая разрешенная турбулентность, модель должна перейти в LES модель (эквивалент Смагоринского)

Возможные пути решения проблемы (1 из 2)

- Ускорение перехода к развитой турбулентности может быть достигнуто разными способами
- Внесение искусственных возмущений на входной границе
 - > Эффективный метод, применимый во многих ситуациях
 - В случае расчета шума струй неприменим, поскольку является дополнительным (ложным) источником шума
- Переход к MILES в области "перехода" к разрешенной турбулентности
 - > Уменьшение вязкости ускорит переход
 - > Другие области потока не должны быть затронуты
 - Необходимо переключиться к LES после появления турбулентных структур
 - Зональный подход труднореализуем
 - ✓ Для построения «поправки» к модели необходимы надежные критерии
 - По расчетной сетке
 - По полученному решению

Возможные пути решения проблемы (2 из 2)

Возможные методы перехода к MILES в области "перехода" к разрешенной турбулентности:

- Фильтрация масштабов, соответствующих высоким частотам, «High-Pass Filtered approach» [Kok, 2012]
 - Замена в определении подсеточных напряжений тензора скоростей деформации на тензор разрешенных пульсаций
- Использование альтернативных дифференциальных операторов в подсеточных моделях [Mockett, 2015]
 - Модификация подсеточной модели, в равновесии переходящая в алгебраические модели, обеспечивающие в 2D областях нулевую подсеточную вязкость (WALE, σ)
- Модификация подсеточного масштаба [Mockett, 2015], [Shur, 2015]
 - Автоматическое уменьшение подсеточного масштаба на начальных участках слоев смешения
- Один из наиболее успешных методов использование подсеточного масштаба, адаптированного к слоям смешения [Shur, 2015]

Kok J.C., Ven H. Van Der. Capturing free shear layers in hybrid RANS – LES simulations of separated flow // NLR-TP-2012-333. **2012**. 1-22 c

Mockett C. и др. Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES // Notes Numer. Fluid Mech. Multidiscip. Des. **2015**. T. 130. C. 187–201.

Shur M.L. и др. An Enhanced Version of des with Rapid Transition from RANS to les in Separated Flows // Flow, Turbul. Combust. **2015**

Подсеточный масштаб, адаптированный к слоям смешения

 $\Delta_{SLA} = \widetilde{\Delta}_{\omega} F_{KH}^{\lim}$

Учитывает особенности сеток,

используемых для расчетов течений со слоями смешения Дополнительное уменьшение подсеточного масштаба на основе критериев, учитывающих особенности течения на начальном участке слоя смешения

Подсеточный масштаб, адаптированный к слоям смешения

 $\Delta_{SLA} = \widetilde{\Delta}_{\omega} F_{KH}^{\lim}$

Учитывает особенности сеток, используемых для расчетов течений со слоями смешения

Дополнительное уменьшение подсеточного масштаба на основе критериев, учитывающих особенности течения на начальном участке слоя смешения

Особенности сеток при расчетах течений со

слоями смешения

- Зачастую сетки измельчаются для учета особенностей течения:
 - Ячейки сильно вытянуты (особенно в структурированных сетках)

 ✓ Использование Δ_{max} в качестве подсеточного масштаба приводит к завышению подсеточной вязкости и еще большему замедлению перехода

Идея состоит в использовании размера ячейки сетки в плоскости потока в случае двумерных течений
 На начальном этапе неустойчивости Кельвина-Гельмгольца возмущения 2D

Тип	Описание	Применение	Вид
Кубический	$\Delta y \sim \Delta y \sim \Delta z$	LES область	
Книга	$\Delta y \ll \Delta x \sim \Delta z$	Пристенная область	
Карандаш	$\Delta y \sim \Delta x \ll \Delta z$	Слой смешения	
Лента	∆y << ∆x << ∆z	Начало слоя смешения	

Типичные ячейки структурированных сеток в сдвиговом потоке U(y)

Подсеточный масштаб для анизотропных ячеек

- Один из возможных способов определения размера ячейки сетки в плоскости потока в случае двумерных течений:
 - Величина I_n = n_w × r характеризует проекцию на плоскость течения координаты точки r_n

– п_о – единичный вектор, сонаправленный с вектором завихренности потока

-**r**_n - радиус-вектор вершины ячейки

> Максимальный размер ячейки в плоскости потока определяется как

$$\widetilde{\Delta}_{\omega} = \frac{1}{\sqrt{3}} \max_{n,m=1,8} | (\mathbf{I}_n - \mathbf{I}_m) |$$

✓ В квази-2D областях этот масштаб имеет порядок O(max(∆_x,∆_y))

✓ В областях с развитыми турбулентными структурами – порядка ∆_{max}

LES вырождения однородной изотропной турбулентности на вытянутых ячейках

- 🚽 Кубические ячейки: 🔲
 - ≻ Все определения ∆ эквивалентны
- Плоские («книга»)
 и вытянутые («карандаш»)
 ячейки:
 - ≻ Δ_{max} слишком диссипативен
 - Vol^{1/3} искажает спектр в инерционном интервале
 - Δ_ω обеспечивает правильный спектр на разрешаемых масштабах (k<16)

Подсеточный масштаб, адаптированный к слоям смешения

$\Delta_{SLA} = \widetilde{\Delta}_{\omega} F_{KH}^{\lim}$

Учитывает особенности сеток, используемых для расчетов течений со слоями смешения Дополнительное уменьшение подсеточного масштаба на основе критериев, учитывающих особенности течения на начальном участке слоя смешения

Критерии, основанные на особенностях двумерных течений

- На основе WALE модели
 - > В сдвиговом течении модель WALE дает почти нулевую вязкость
 - Это достигается за счет использования в модели Смагоринского вместо деформации S величины

$$S_{ij}^{d} = \frac{1}{2} \left[\left(\frac{\partial u_{i}}{\partial x_{j}} \right)^{2} + \left(\frac{\partial u_{j}}{\partial x_{i}} \right)^{2} \right] - \frac{1}{3} \left(\frac{\partial u_{k}}{\partial x_{k}} \right)^{2} \delta_{ij} \equiv S_{ik} S_{kj} + \Omega_{ik} \Omega_{kj} - \frac{1}{3} \left(S_{lk} S_{kl} + \Omega_{lk} \Omega_{kl} \right) \delta_{ij}$$

- В подсеточной версии модели Спаларта-Аллмареса в генерационном слагаемом вместо Ω можно использовать S^d
 - В случае двумерного течения подсеточная вязкость сильно уменьшится
 - ✓ При наличии турбулентного контента в равновесии модель эквивалентна модели WALE

Критерий, основанный на особенностях

двумерных течений

Vortex Tilting Measure

$$= \frac{\sqrt{6} |(\hat{\mathbf{S}} \cdot \boldsymbol{\omega}) \times \boldsymbol{\omega}|}{|\boldsymbol{\omega}|^2 \sqrt{3 \operatorname{trace}(\hat{\mathbf{S}}^2) - [\operatorname{trace}(\hat{\mathbf{S}})]^2}}$$

- ≻ В двумерном случае равен 0
- > В трехмерном случае принимает случайные значения от 0 до 1

VTM

• Осредненная по соседним ячейкам величина <VTM> позволяет надежно отличить двумерное течение от развитой трехмерной турбулентности

$$F_{KH}$$
 (< VTM >) = max { F_{KH}^{\min} , min { F_{KH}^{\max} , F_{KH}^{\min} + $\frac{F_{KH}^{\max} - F_{KH}^{\min}}{a_2 - a_1}$ (< VTM > - a_1)}}
 $F_{KH}^{\min} = 0.1, F_{KH}^{\max} = 1.0, a_1 = 0.15, a_2 = 0.3$ > в областях с развитой турбулентностью, $F_{KH} = 1.0$

▶ в начальном участке слоя смешения F_{кн} = 0.1

Полученный критерий может быть использован для уменьшения линейного масштаба в двумерном течении:

$$\Delta = \widetilde{\Delta}_{\omega} F_{KH} (< \text{VTM} >)$$

$$F_{KH}^{\lim} = \begin{cases} 1.0, & \text{if } f_d < (1 - \varepsilon) \\ F_{KH}, & \text{if } f_d \ge (1 - \varepsilon) \end{cases}$$
 - Деактивация функции внутри
пограничных слоев (для DDES)

 $\implies \Delta_{SLA} = \widetilde{\Delta}_{\omega} F_{KH}^{\lim}$

<VTM>

Пример: круглая струя, SA DES

- Течение, в котором стандартный DES дает поздний переход:
 - ➤ Использование Δ_∞ приводит к более раннему развитию турбулентности по сравнению со стандартным DES
 - Результаты использования Δ_{SLA} превосходят DES
 $\widetilde{\Delta}_{\omega}$

Третьоктавные спектры

• Оба гибридных подхода не уступают MILES

Диаграмма шума

• Использование каждого из подходов по отдельности (Δ_{ω} и WALE) менее эффективно, чем гибридный подход

Обтекание выпуклости на плоской поверхности

- Несжимаемое течение
 - > Re = cU_0/v = 9.4 · 10⁵

≻ Высота выпуклости *h* = 0.128 *c*

- Расчетная область и сетка:
 - > Размер расчетной области: 6.14 *c*x0.9 *c*x0.4 *c*
 - ≻ Общее число узлов N = 5·10⁶

Обтекание выпуклости на плоской поверхности

Обтекание выпуклости на плоской поверхности

Трансзвуковое течение в каверне

- Сжимаемое течение
- M = 0.85
- Re = $HU_0/v = 3.4 \cdot 10^5$
- Расчетная область и сетка:
 - ≻ Размер каверны 20*H*х4*H*х4*H*
 - ≻ Размер области: 70*H*x36*H*x24*H*
 - ≻ Число узлов сетки N = 3·10⁶

Трансзвуковое течение в каверне

- Низкое значение функции *F_{кн}* в оторвавшемся слое смешения приводит к снижению турбулентной вязкости
- В этом случае модификация существенно влияет на характер течения:
 - Турбулизация слоя смешения происходит быстрее
 - > Разрешается больше турбулентных структур

Трансзвуковое течение в каверне

 Вследствие более качественного разрешения турбулентных структур как общий уровень звукового давления на дне каверны, так и его спектры предсказываются модифицированным DDES подходом намного точнее

<u>Резюме</u>

- В процессе эксплуатации оригинальной версии (DES-97) был выявлен ряд недостатков и проблем
 - > Это стимулировало дальнейшее развитие метода DES
- Появились новые версии метода, свободные от этих недостатков
 - > DES с низкорейнольдсовой поправкой
 - DDES (Delayed DES)
 - > DES с модифицированным масштабом