Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Гидроаэродинамика, горение и теплообмен»

Курс лекций «Модели физико-химической ГГД и турбулентности. Вихреразрешающие подходы» (http://cfd.spbstu.ru/agarbaruk/lecture/SRS_methods)

<u>Метод адаптивных масштабов</u> Scale Adaptive Simulation (SAS)

Гарбарук Андрей Викторович (agarbaruk@mail.ru) 2019 г.

Содержание

- 1. Глобальные гибридные методы, основанные на решении
 - Turbulence Resolving RANS (TRRANS)
 - Метод адаптивных масштабов Scale Adaptive Simulation (SAS)
- 2. Пример практического применения DDES и SAS: шасси самолета

Автоматические гибридные методы

Способы разделения на RANS и LES области

- По расчетной сетке: соотношение шага сетки и расстояния до стенки (метод DES)
 - Более совершенная версия метода (DDES) включает в себя защитные функции, основанные на решении

- По решению: по наличию или отсутствию вихревых структур
 - Необходима подсеточная модель, в которой линейный масштаб определяется не шагом сетки, а решением
 - ✓ Эта модель должна при измельчении сетки вести себя аналогично модели Смагоринского $_{V_t} = (C_s \cdot \Delta)^2 S$
 - > Линейный масштаб не входит в формулировку модели
 - ✓ Такие модели называют «расширенные RANS модели»

Turbulence Resolving RANS (TRRANS)

• Уравнения *k*-ш SST модели

$$\rho \frac{Dk}{Dt} = \nabla \bullet \left(\left(\mu + \sigma_k \mu_T \right) \nabla k \right) + P_k - \rho \beta^* \omega k$$
$$\rho \frac{D\omega}{Dt} = \nabla \bullet \left(\left(\mu + \sigma_\omega \mu_T \right) \nabla \omega \right) + \frac{\omega}{k} P_k - \rho \beta \omega^2 + (1 - F_1) D_{k\omega}$$

• DES на основе *k*-ю модели SST получатся путем модификации линейного масштаба в диссипативном члене *k*-уравнения:

$$D_{RANS}^{k} = \beta^{*} \rho \alpha k = \rho k^{3/2} / l_{RANS} \implies D_{DES}^{k} = \rho k^{3/2} / l_{DES} \qquad l_{DES} = \min\{l_{RANS}, (C_{DES}\Delta)\}$$

> Это выражение можно переписать по другому

$$D_{DES}^{k} = D_{RANS}^{k} \cdot F_{DES} \qquad F_{DES} = \left(\frac{l_{RANS}}{\min(l_{RANS}, C_{DES}\Delta)}\right) = \max\left(1, \frac{l_{RANS}}{C_{DES}\Delta}\right)$$

• Аналогично можно сформулировать модель, в которой функция F

будет определяться только решением
$$D_{TRRANS}^{k} = D_{RANS}^{k} \cdot F_{TRRANS}$$

где $F_{TRRANS} = \left(\frac{S}{\min(S, C_{TRANS}\Omega)}\right)^{2}$ или $F_{TRRANS} = \max\left[1, \left(\frac{S}{C_{TRANS}\Omega}\right)^{2}\right]$

Калибровка константы

- Калибровка константы производится на задаче о вырождении однородной изотропной турбулентности
 - Значение константы $C_{\text{TRANS}} = 1.25$
- Правильное поведение спектра при измельчении сетки
 - Аналогично модели
 Смагоринского

Модель TRRANS удовлетворяет всем требованиям, предъявляемым к подсеточным моделям

Вырождение однородной изотропной турбулентности

- Поведение TRRANS модели при измельчении сетки полностью аналогично поведению модели Смагоринского
 - > TRRANS «правильная» подсеточная модель

Обтекание цилиндра

Функция F_{TRRANS} «активна» в областях высоких градиентов

Обтекание цилиндра

- На сетке для DES турбулентные структуры похожи на структуры, получаемые методом DES
- При загрублении сетки до типичной для RANS решение приближается к URANS

Обтекание профиля NACA0012

Турбулентные структуры и турбулентная вязкость, получаемые с использованием URANS, DES и TRRANS

Обтекание профиля NACA0012

Несмотря на существенные различия в мгновенной картине течения, средние характеристики близки для все рассмотренных методов

<u>Метод адаптивных масштабов</u> Scale Adaptive Simulation (SAS)

- SAS (как и TRRANS) основан на *k*-ш модели Ментера SST
- В уравнение для ω добавлен дополнительный источник
 - > Приводит к уменьшению турбулентной вязкости
 - ✓ Обеспечивает разрешение минимальных возможных масштабов
 - B TRRANS и DES тот же эффект обеспечивает увеличение стока в уравнении для k
- Источник (как и в TRRANS) активируется в том случае, когда в потоке имеются разрешенные пульсации

SAS – RANS модель

с расширенными возможностями

- URANS
 - URANS gives unphysical single mode unsteady behavior

LES (Large Eddy Simulation)

 Too expensive for most industrial flows due to high resolution requirements in boundary layers

DES (Detached Eddy Simulation)

- First industrial-strength model with LEScontent
- Increased complexity (grid sensitivity) due to explicit mix of to modelling concepts
- SAS (Scale-Adaptive Simulation)
 - Improved URANS (close gap between URANS and DES)

- Авторы (Ментер) предлагают трактовать SAS как «URANS модель»
 - > Эта модель в определенных случаях демонстрирует LES возможности

Обоснование SAS

- Обоснование SAS не очень прозрачно и начинается с вывода уравнения для $\Phi = \sqrt{kL}$
 - ≻ В нем естественным образом появляется линейный масштаб L_{vK}
 - New transport equation for $\Phi = \sqrt{kL}$

$$\frac{\partial \Phi}{\partial t} + U_j \frac{\partial \Phi}{\partial x_j} = \zeta_1 \frac{\Phi}{k} P_k - \hat{\zeta}_2 v_t S |U'| \frac{\Phi^2}{k^{3/2}} - \zeta_3 \cdot k + \frac{\partial}{\partial y} \left[\frac{v_t}{\sigma_{\Phi}} \frac{\partial \Phi}{\partial y} \right]$$
$$|U''| = \sqrt{\frac{\partial^2 U_i}{\partial x_j \partial x_j}} \frac{\partial^2 U_i}{\partial x_k \partial x_k}; \quad P_k = v_t S^2$$

v. Karman length-scale as natural length-scale:

$$L \sim \kappa \left| \frac{S}{U''} \right| = L_{vK}$$

Обоснование SAS

- Следующий шаг: вывод из уравнения для Ф уравнения для изотропной диссипации ω
 - > В правой части появляется два дополнительных слагаемых
 - ✓ На их основе строится $F_{SST-SAS}$

• Tranformation:

$$\Phi = \frac{1}{c_{\mu}^{1/4}} \frac{k}{\omega}$$

$$\frac{D\omega}{Dt} = \frac{1}{c_{\mu}^{1/4}} \frac{D}{Dt} \left(\frac{k}{\Phi}\right) = \frac{1}{c_{\mu}^{1/4}} \left(\frac{1}{\Phi} \frac{Dk}{Dt} - \frac{k}{\Phi^2} \frac{D\Phi}{Dt}\right) = \frac{\omega}{k} \frac{Dk}{Dt} - \frac{\omega}{\Phi} \frac{D\Phi}{Dt}$$

$$\frac{\partial \rho \omega}{\partial t} + \frac{\partial U_j \rho \omega}{\partial x_j} = \alpha \rho S^2 - \beta \rho \omega^2 + \frac{\partial}{\partial x_j} \left(\frac{\mu_i}{\sigma_o} \frac{\partial \omega}{\partial x_j}\right) + \frac{2\rho}{\sigma_{\Phi}} \left(\frac{1}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j} - \frac{k}{\omega^2} \frac{\partial \omega}{\partial x_j} \frac{\partial \omega}{\partial x_j}\right) + \tilde{\zeta}_2 \kappa \rho S^2 \frac{L}{L_{vK}}$$
Wilcox Model BSL (SST) Model New
SST-SAS Term

$$F_{SST-SAS} = \rho \cdot F_{SAS} \max \left[\tilde{\zeta}_2 \kappa S^2 \frac{L}{L_{vK}} - \frac{2}{\sigma_{\Phi}} k \cdot \max \left(\frac{1}{\omega^2} \frac{\partial \omega}{\partial x_j} \frac{\partial \omega}{\partial x_j}, \frac{1}{k^2} \frac{\partial k}{\partial x_j} \frac{\partial k}{\partial x_j}\right), 0\right]$$

Как работает SAS

 Дополнительное слагаемое в уравнении для ω отличается от полученного аналитически ограничителями

$$Q_{SAS} = \rho \cdot F_{SAS} \left(\max \left\{ \widetilde{\zeta}_{2} \kappa S^{2} \frac{L}{L_{\nu K}} - \frac{2}{\sigma_{\Phi}} k \left(\max \left\{ \frac{1}{\omega^{2}} \frac{\partial \omega}{\partial x_{j}} \frac{\partial \omega}{\partial x_{j}}, \frac{1}{k^{2}} \frac{\partial k}{\partial x_{j}} \frac{\partial k}{\partial x_{j}} \right\}, 0 \right]$$

• В области RANS

$$\int_{2} \kappa S^{2} \frac{L}{L_{\nu K}} < \frac{2}{\sigma_{\Phi}} k \cdot \max\left(\frac{1}{\omega^{2}} \frac{\partial \omega}{\partial x_{j}} \frac{\partial \omega}{\partial x_{j}}, \frac{1}{k^{2}} \frac{\partial k}{\partial x_{j}} \frac{\partial k}{\partial x_{j}}\right)$$

- ➤ Модель SAS автоматически переходит в модель SST
 - ✓ Это не всегда так (например области больших градиентов в слоях смешения)
- В области LES происходит автоматическая подстройка масштаба L_{vK} под разрешенную турбулентность
 - ▶ Модель автоматически переходит в модель Смагоринского

$$\mu_{t} = \left[\frac{1}{F_{SAS}\kappa\widetilde{\zeta}_{2}}\left(\frac{\beta}{\beta^{*}}-\alpha\right)\right]^{2} \cdot \rho L_{\nu K}^{2}S$$

✓ Это тоже не всегда так – зависит от схемы

SAS v.2.0

 Для избавления зависимости результатов от используемого расчетного кода в масштаб L_{vK} был введен ограничитель, зависящий от шага сетки

$$L_{\nu K} = \max\left(\frac{\kappa S}{|U'|}, L_{\nu K, eq}\right), \qquad L_{\nu K, eq} = C_{S} \cdot \frac{\kappa \zeta_{2}}{\beta/c_{\mu} - \alpha} \cdot \Delta \qquad \qquad F_{SAS} = 2.0$$

> Модель стала опираться не только на решение, но и на шаг сетки

- Калибровка дает С_S =0.16
 - Модель чувствительна к измельчению сетки
 - Изменение средней подсеточной вязкости во времени отличается от модели Смагоринского
 - Данные дефекты некритичны

Обтекание обратной ступеньки

Одно из наиболее проблемных течений для SAS

- В этом течении SAS дает стационарное решение
 - Независимо от начального приближения
- Решение SAS несколько отличается от решения SST
 - Различия между NTS кодом и CFX обусловлены использованием разных входных профилей
- Причиной различия является ненулевое значение источника Q_{SAS} в слое смешения

SAS в течениях с массированным отрывом

В отрывных зонах SAS обеспечивает разрешение вихрей

Re=3.6×10⁶

- Turbulent boundary layer RANS
- 3.25×10⁶ nodes Detached region "LES"-like
- c_{SAS}=0.54

Isosurface of S²- Ω^2 . Colour: L/D

Сверхкритическое обтекание цилиндра

<u>Сравнение SAS и DES</u>

- Методы SAS и DES построены на разных концепциях автоматического определения LES области в гибридном расчете
 - ➢ DES опирается на сетку
 - > SAS базируется на решении
- Концепция SAS кажется более технологичной: метод должен сам «разобраться» где использовать LES
 - > На практике это преимущество отсутствует
 - ✓ Существует опасность, что SAS выберет неоптимальную ветку гибридного метода
- При дальнейшем развитии обоим методам не удалось полностью остаться в рамках основной концепции
 - «Идеальный» гибридный метод должен опираться как на сетку, так и на текущее решение
 - Существующие гибридные методы не «идеальны», поэтому иногда приходится использовать зонный подход к разделению RANS и LES областей

Пример практического применения DDES и SAS:

шасси самолета

- Типичная DES задача
 - > Большая отрывная зона
 - > Естественная неустойчивость

• Нет сходимости

 Разрешаются только крупные структуры

- Разрешается гораздо больше структур
- Структуры от разных элементов взаимодействуют между собой

Многоблочная структурированная сетка, 2.5М узлов

Линии тока окрашенные модулем скорости

- Защита пограничного слоя успешно предотвращает переключение к LES внутри пограничного слоя
- Защита не затрагивает LES в отрывной области

Результаты DDES хорошо соответствуют экспериментальным данным

Зависимость коэффициента давления для переднего и заднего колес

Имеющиеся различия можно объяснить использованием достаточно грубой сетки (2.5 М узлов)

<u>Модель шасси самолета</u> <u>в аэродинамической трубе</u>

Многоблочная (11 блоков) структурированная сетка, 7.6М узлов

Расчетная сетка

Шаг сетки в LES области около 0.02D, $y_1^+ < 1$, $\Delta t = 0.005 D/U_\infty$

Визуализация течения (SA DDES)

Изоповерхности λ_2 критерия

Контуры завихренности

- Разрешенные турбулентные структуры соответствуют шагу LES сетки
- Сильное взаимодействие между структурами, порожденными разными элементами
- Отсутствие регулярных структур (vortex shedding)

Анимация течения (SA-DDES)

Турбулентные структуры разрешаются практически одинаково

Сравнение SA DDES и SAS

поверхностные линии тока в осреденном течении

- Одинаковая топология течения в области массированного отрыва от гладкой поверхности
 - > Подветренная сторона обоих колес
 - > Наветренная сторона заднего колеса

Сравнение с экспериментом

поверхностные линии тока в осреденном течении

SA DDES

SAS

Expt.

Топология течения воспроизводится правильно обоими методами

<u>Сравнение SA DDES и SAS</u>

коэффициент давления на поверхности шасси

 $C_P = 2(-p_{ref})/(\rho U_{\infty}^2)$

Давление на поверхности очень неоднородно

Сравнение с экспериментом

коэффициенты сопротивления и подъемной силы

	SA DDES		SA	Expt	
	Left	Right	Left	Right	
Front C _d	0.24	0.25	0.24	0.25	0.24
Rear C _d	0.14	0.14	0.14	0.15	0.17
Front C_L	-0.06	-0.07	-0.05	-0.05	-0.05
Rear C_L	-0.02	-0.03	-0.03	-0.02	-0.03

Сравнение с экспериментом

коэффициент давления на стенках трубы

Сравнение SA DDES и SAS

пульсации давления на поверхности шасси

 $\overline{p}' = (p - \langle p \rangle) / (\rho U_{\infty}^2)$

Практически по всей поверхности давление существенно нестационарное

Сравнение SA DDES и SAS

звуковое давления на поверхности шасси

- Диапазон по поверхности около 40dB
- Максимальное значение достигается на оси тележки и на внутренней части заднего колеса
 - > Натекание турбулентности, вызванной обтеканием передней оси
- Низкий уровень на наветренной части переднего колеса

Сравнение с экспериментом

<u>максимальные и минимальные значения C_р и SPL</u>

	Cp _{min}	Cp _{max}	Cp _{min}	Cp _{max}	SPL _{min}	SPL _{max}	SPL _{min}	SPL _{max}
	Front	Front	Rear	Rear	Front	Front	Rear	Rear
DDES	-2.05	1.00	-2.16	0.96	85	146	118	150
SAS	-2.05	0.99	-1.98	0.93	98	147	118	150
Expt.	-2.11	1.01	-2.00	0.90	110	147	120	151

 Image: Cp
 Image

Хорошее совпадение с экспериментом для обеих моделей

Сравнение SA DDES и SAS

спектры давления на поверхности

Широкополосный сигнал
 Интенсивность в наветренных точках (4-6) гораздо ниже

Сравнение SA DDES и SAS

нестационарные силовые нагрузки

- Низкое значение C_z подтверждает достаточность времени осреднения
- Пик в спектре при St=~6 соответствует частоте схода вихрей со стойки

Резюме

- Переключение между RANS и LES областями в гибридных подходах может быть основано на свойствах решения
 - LES ветка активируется при наличии разрешенной турбулентности
- Наиболее известным методом, построенным на этом принципе является SAS
 - > Полностью избежать использования шага сетки не удается
 - ✓ Трудно обеспечить правильную реакцию LES ветки на измельчение сетки
- Разный способ построения приводит к различию в поведении SAS и DDES
 - В некоторых задачах SAS решение является стационарным, а DDES – нестационарным
 - > Результаты расчета массированно отрывных течений близки