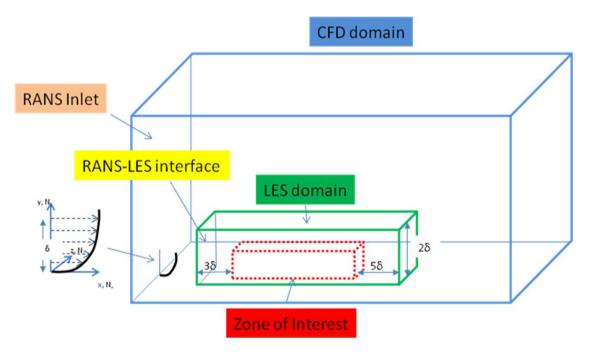
Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Гидроаэродинамика, горение и теплообмен»

Курс лекций «Модели физико-химической ГГД и турбулентности. Вихреразрешающие подходы» (http://cfd.spbstu.ru/agarbaruk/lecture/SRS_methods)

Входные условия для LES Часть 1

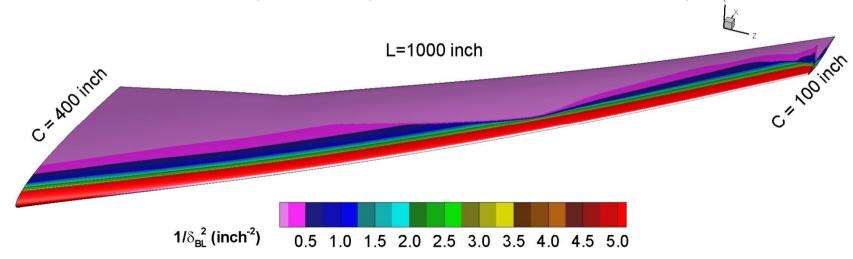

Содержание

- 1. Встроенный LES
 - Мотивация
 - Переход от LES к RANS
 - Переход от RANS к LES
- 2. Рециклиг
- 3. Метод синтетических вихрей (Synthetic Eddy Method SEM)
- 4. Метод вихрей (Vortex Method VM)

Встроенный LES Embedded LES (E-LES)

В этом методе вокруг интересующей зоны течения строится LES область, которая встроена в область RANS

- B LES области может использоваться как разрешенный до стенки LES, так и WMLES
- Проблема «серой области» зависит от взаимной ориентации границы между RANS и LES областями и направления потока
 - > Параллельно потоку
 - ▶ Переход от LES к RANS
 - ▶ Переход от RANS к LES


Мотивация

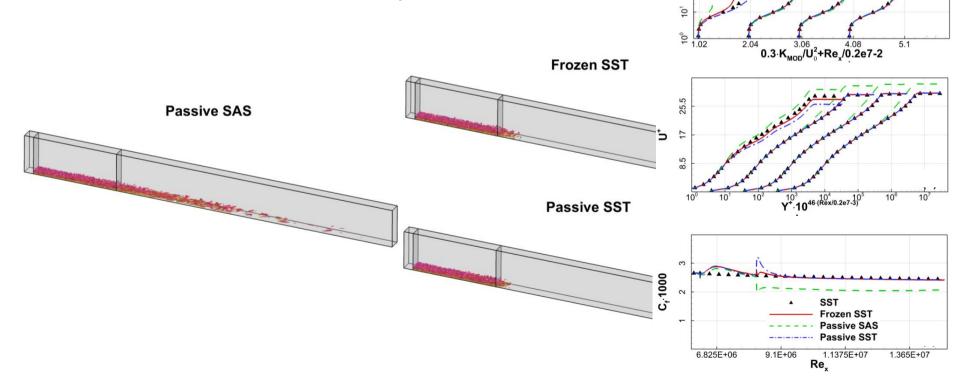
Оценка размера сетки для полного WMLES

- Существуют различные эмпирические оценки
 - Уществуют разлитиво омплут тоски о одения.

 Например, для пограничного слоя $N_{wm} = 54.7 \frac{L_z}{L_x} n_x n_y n_z \operatorname{Re}_{Lx}^{2/7} \left| \left(\frac{\operatorname{Re}_{Lx}}{\operatorname{Re}_{x0}} \right)^{5/7} 1 \right|$
- Для крылового профиля эта оценка дает около 40 миллиардов!!!
 - > Удлинение $L_7/L_x=12$

 - У Число Рейнольдса Re_{Lx}=5⋅10⁷
 - У Число Рейнольдса перехода Re_{x0}=5⋅10⁵
 - > Две стороны
- Очевидно, что такие затраты неприемлемы в настоящее время

Переход от LES к RANS


Обычно не критичен, поскольку зона наибольшего интереса находится в LES области

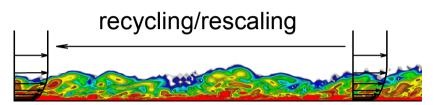
- Необходимо решить 2 задачи
 - > Восстановить турбулентные характеристики до RANS значений
 - > «Избавиться» от разрешенных турбулентных пульсаций
 - ✓ При RANS вязкости и противопоточной схеме пульсации быстро затухнут сами
- Восстановление турбулентных характеристик напрямую из осредненных LES полей связано с разными технологическими проблемами.
 - > Очень трудно реализовать при проведении совместного RANS-LES расчета (Embedded LES)
- Обычно используются более технологичные, но менее точные методы
 - «Пассивное» решение уравнений для турбулентных характеристик в LES области
 - ✓ Из-за наличия контента приводит к завышению турбулентной вязкости на входе в RANS область
 - > Использование значений из предварительного RANS расчета
 - ✓ Его результаты могут заметно отличаться от средних LES значений на интерфейсе

Пример: пограничный слой при Re₀=10000

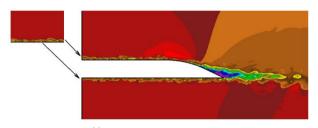
0.002·v_t/v+Re_x/0.2e7-3

- В данном случае LES и RANS решения хорошо согласуются
 - Использование характеристик из предварительного RANS расчета дает наилучший результат
- Решение «пассивных» уравнений SST также хорошо согласуется с экспериментом
- SAS затягивает область перехода

Переход от RANS к LES


- Во всех вихреразрешающих подходах часть турбулентных структур (или даже все структуры) должны разрешаться
 - > DNS
 - > LES
 - > Гибридные методы

Как появляются турбулентные структуры?


- Во некоторых течениях это происходит за счет естественной неустойчивости (течения с массированным отрывом)
 - > Неустойчивость может зависеть от вычислительных параметров
 - ✓ Расчетная сетка
 - ✓ Разностная схема
 - ✓ Глубина сходимости на итерациях на временном шаге
 - **√** ...
- В других ситуациях турбулентные структуры необходимо создавать искусственно
 - На входе в расчетную область (граничные условия)
 - > На границе RANS-LES областей
 - ✓ Встроенный LES (Embedded LES ELES)

Способы создания турбулентного контента

- На основе проводимого расчета
 - > Периодические граничные условия
 - ✓ Пригодны только для простейших периодических течений
 - Рециклинг
 - ✓ Использование решения той же задачи в области вниз по потоку

- > Вспомогательный расчет
 - ✓ Параллельное проведение независимого расчета более простой задачи

- Создание «базы данных» нестационарных пульсаций на основе расчета простейших течений
 ν_{LES}=V_{RANS}+ν'_{synth}(k_y, ω_x)
- Синтетическая генерация турбулентности
 - Создание двумерных «вихрей»и их конвекция через входную границу
 - ✓ Метод синтетических вихрей (Synthetic Eddy Method SEM)
 - ✓ Метод вихрей (Vortex Method VM)
 - Создание турбулентных пульсаций как суперпозиции пространственновременных Фурье-мод

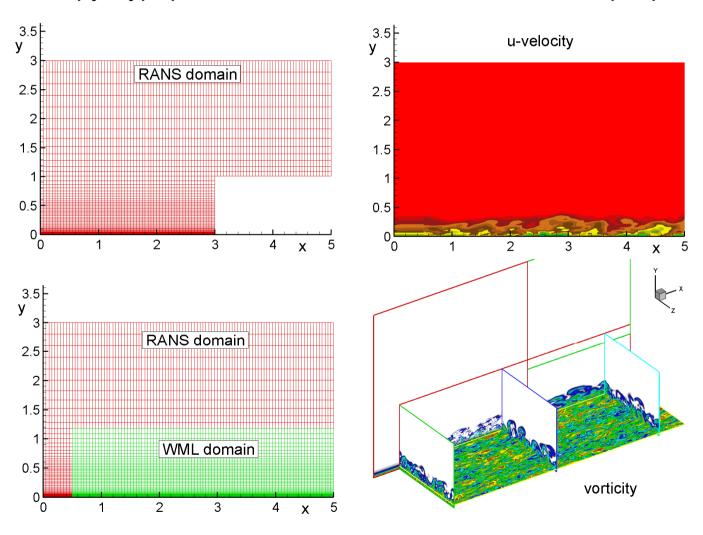
Способы задания пульсаций в расчете

- Входная граница расчетной области
 - ✓ Нестационарные граничные условия
- Встроенный LES (ELES)
 - > Задание межблочных нестационарных граничных условий
 - ✓ Требуется явная разбивка на блоки
 - ✓ Возможно влияние возмущений вверх по потоку в RANS область
 - Необходимо использовать перекрывающиеся сетки, что не во всех кодах легко реализуемо
 - ✓ Существенные возмущения давления
 - Не годится для решения задач аэроакустики и аэроупругости
 - Необходимо использовать специальные методы подавления ложного шума
 - > Использование нестационарного объемного источника
 - ✓ Более сложная задача
 - Необходимо задать такой объемный источник в уравнениях движения, чтобы получившиеся в ходе решения поля соответствовали «истинной» турбулентности
 - ✓ Потенциально более технологичен, чем граничные условия

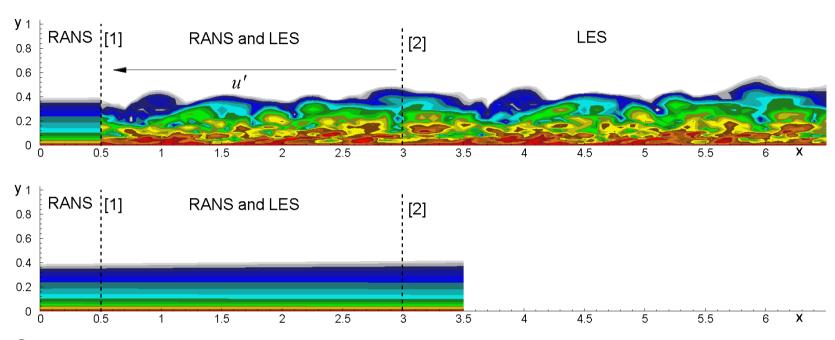
Зависимость от расчетного кода

- Расчетные коды могут существенно различаться даже в рамках метода конечных объемов
 - Способ хранения данных
 - ✓ Cell-centred
 - ✓ Vertex based
 - Способ задания граничных условий
 - ✓ Задание значений в узлах
 - ✓ Задание потоков на гранях
 - Тип используемых сеток
 - ✓ Структурированные
 - ✓ Неструктурированные
 - > Способ реализации многоблочности
 - ✓ С перекрытием (Chimera type grid)
 - ✓ Стык в стык
 - Возможность наличия «висящих» узлов
- Все эти особенности существенно влияют на реализацию метода
 - Реализация любого метода в новом коде большая работа
 - Неудачная реализация даже очень хорошего метода может стать причиной плохих результатов

Примеры применения некоторых подходов

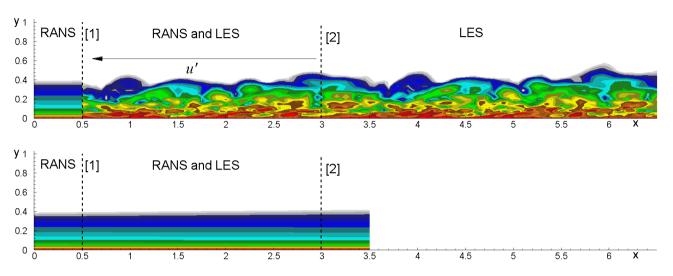

- Рециклиг
- Метод синтетических вихрей (Synthetic Eddy Method SEM)
- Метод вихрей (Vortex Method - VM)
- Генератор синтетической турбулентности (Synthetic Turbulence Generator STG)

Рециклинг


Рециклинг в рамках ELES

NTS код

• Структурированные многоблочные сетки с перекрытием



Рециклинг пограничного слоя

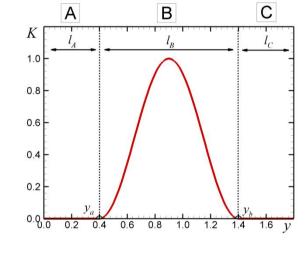
- Задача
 - > Задать нестационарные граничные условия на входе в LES область (сечение 1)
- Доступные данные
 - ➤ RANS решение в сечении 1
 - ➤ LES и RANS решения в сечении 2
 - ✓ На некотором расстоянии от выходной границы RANS области
- Необходимо учесть
 - > Толщины пограничных слоев в сечениях 1 и 2 отличаются
 - ➤ Осредненный по времени LES может не совпадать с RANS

Рециклинг пограничного слоя

Значение скорости на входе в LES область рассчитывается по следующим формулам

$$[u_{LES}(y)]_1 = [u_{RANS}(y)]_1 + [u'(y)]_1$$

$$[u'(y)]_1 = [u'(y/\beta(y))]_2 \cdot [\alpha(y)]_1 \qquad [u'(y)]_2 = [u_{LES}(y)]_2 - [u_{RANS}(y)]_2$$

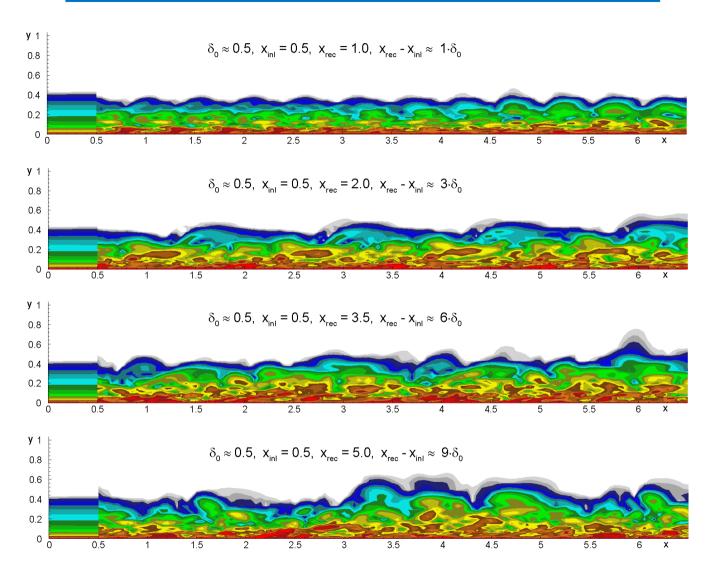

- β(y) коэффициент преобразования координаты
 - ✓ сжатие/растяжение профиля
- α(y) коэффициент нормировки пульсаций
 - ✓ рассчитывается из условия равенства кинетической энергии турбулентности в LES и RANS областях в сечении 1

Особенности метода

• В данном алгоритме под пульсациями понимается величина

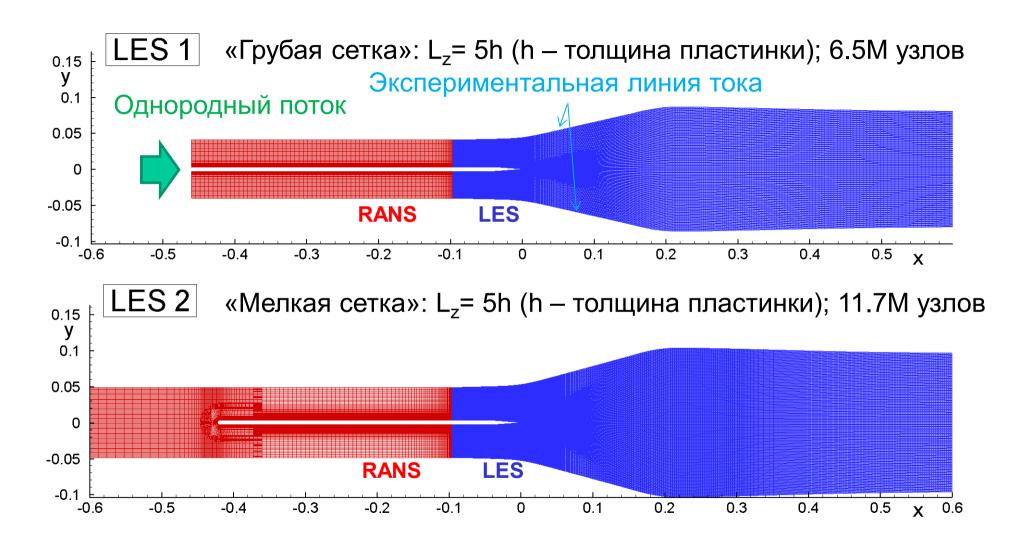
$$u'(y) = u_{LES}(y) - u_{RANS}(y)$$

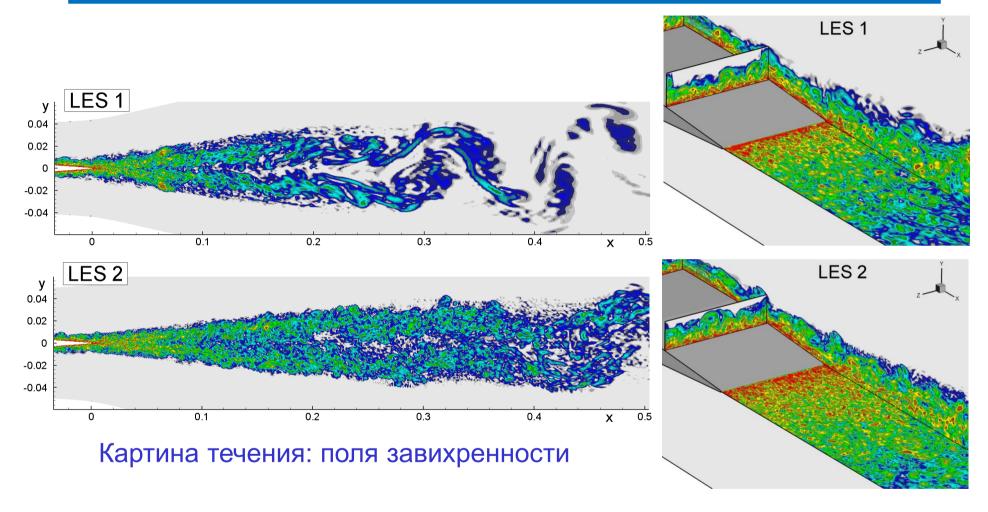
> Это означает, что $\langle u'(y) \rangle = \langle u_{LES}(y) \rangle - u_{RANS}(y) \neq 0$


- Нормировка производится независимо в 3 разных областях
 - В каждой из трех подобластей
 α(y) рассчитывается одинаково
 по следующим формулам

$$\alpha^2 = \max(E_{RANS} - E_{mod}, \varepsilon) / \max(E_{res}, \varepsilon)$$

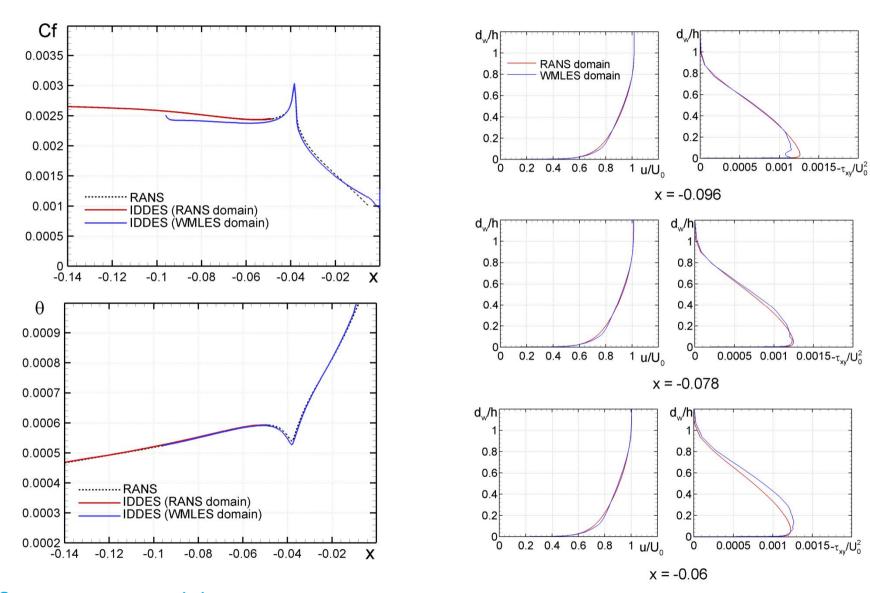
$$\begin{split} E_{RANS}(y) &= \int\limits_{z_0 - lz}^{z_0 + lz} \int\limits_{y_0}^{y} K_{RANS}(y, z) \cdot dz \cdot dy \\ E_{LES, \text{mod}}(y) &= \int\limits_{z_0 - lz}^{z_0 + lz} \int\limits_{y_0}^{y} K_{LES, \text{mod}}(y, z) \cdot dz \cdot dy \\ E_{LES, \text{res}}(y) &= \int\limits_{z_0 - lz}^{z_0 + lz} \int\limits_{y_0}^{y} K_{LES, \text{res}}(y, z) \cdot dz \cdot dy \end{split}$$


Влияние длины рециклинга


При малых длинах видны соответствующие периодические структуры

• Длина рециклинга должна быть заметно больше самых крупных вихрей

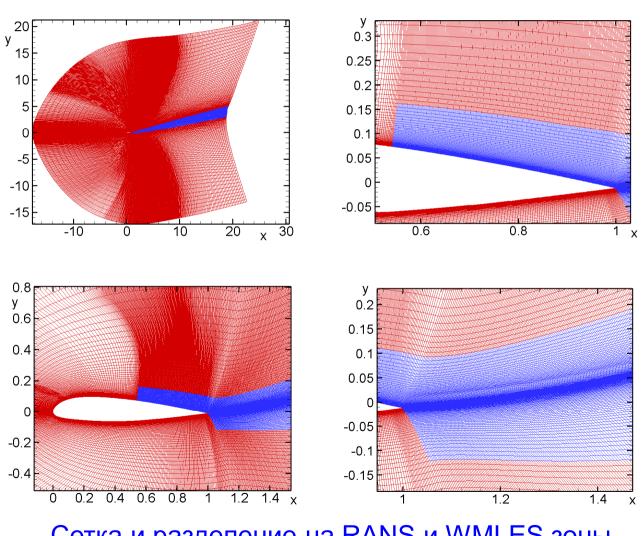
Примениение рециклинга: ближний след



Примениение рециклинга: ближний след

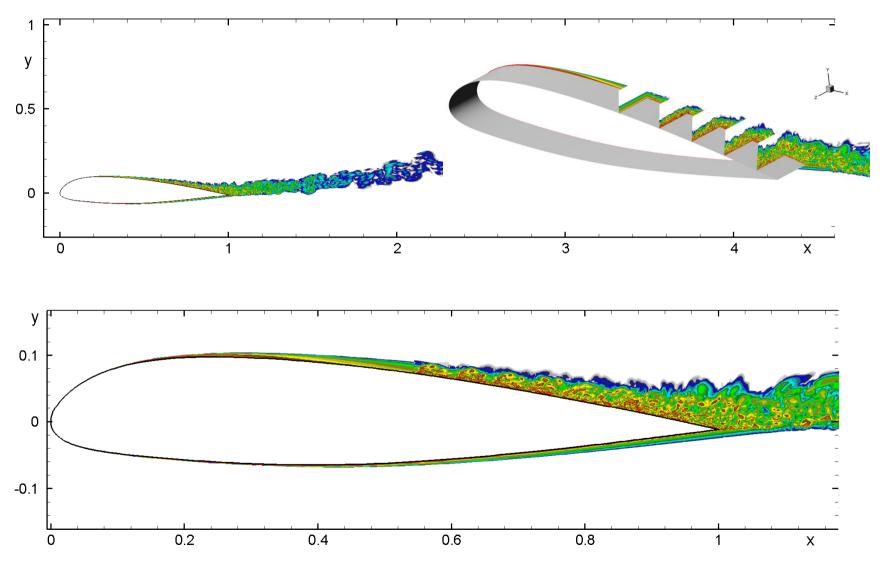
- Мелкая сетка обеспечивает лучшее разрешение мелкомасштабной турбулентности
 - > Это ведет к более позднему появлению крупных когерентных структур

Примениение рециклинга: ближний след

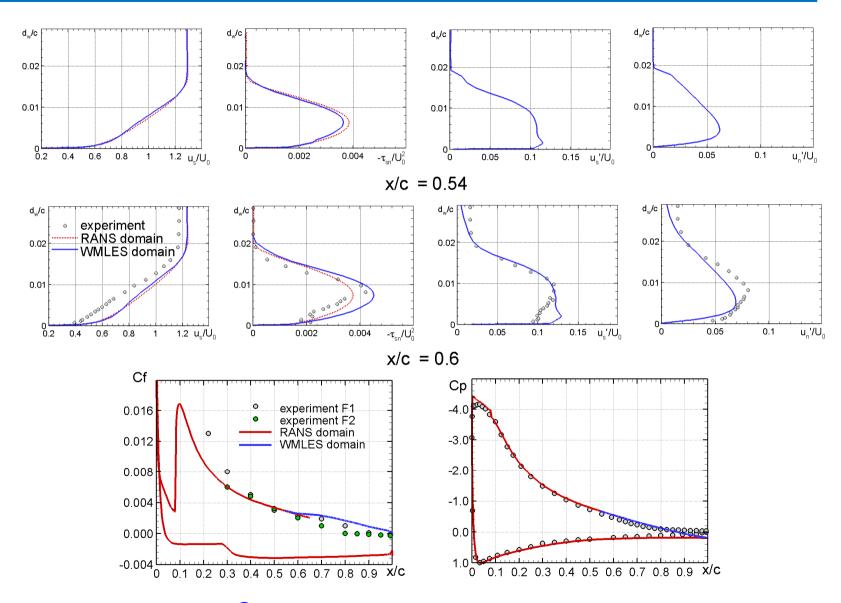


Зависимость коэффициента трения и толщины потери импульса вдоль пластины

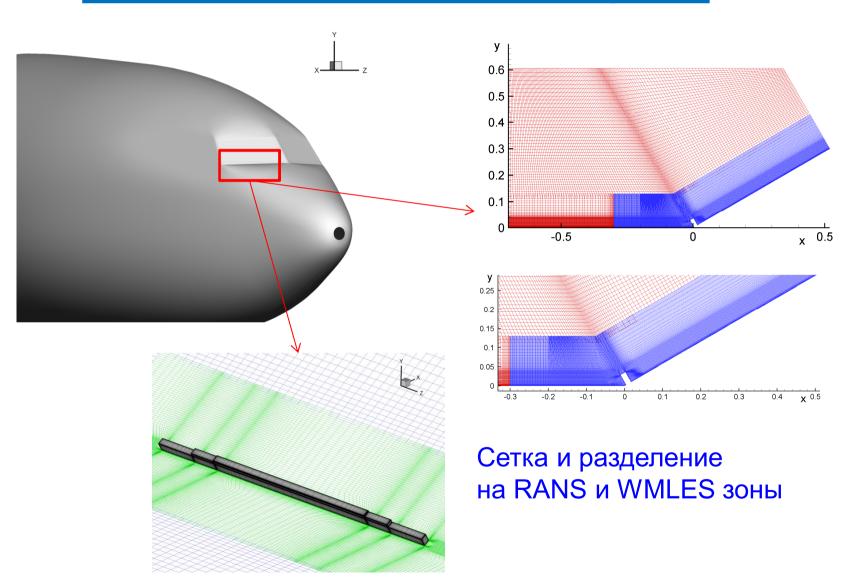
Профили скорости в перекрывающейся области


Применение рециклинга: ONERA A-airfoil

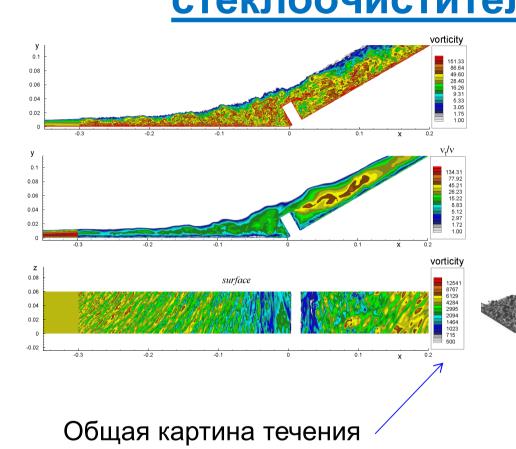
WMLES зона охватывает зону отрыва и след


Сетка и разделение на RANS и WMLES зоны

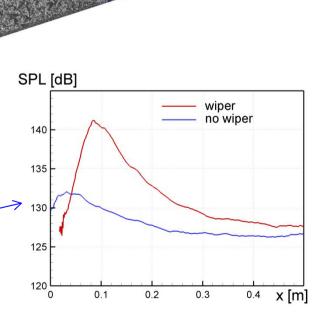
Применение рециклинга: ONERA A-airfoil


Общая картина течения

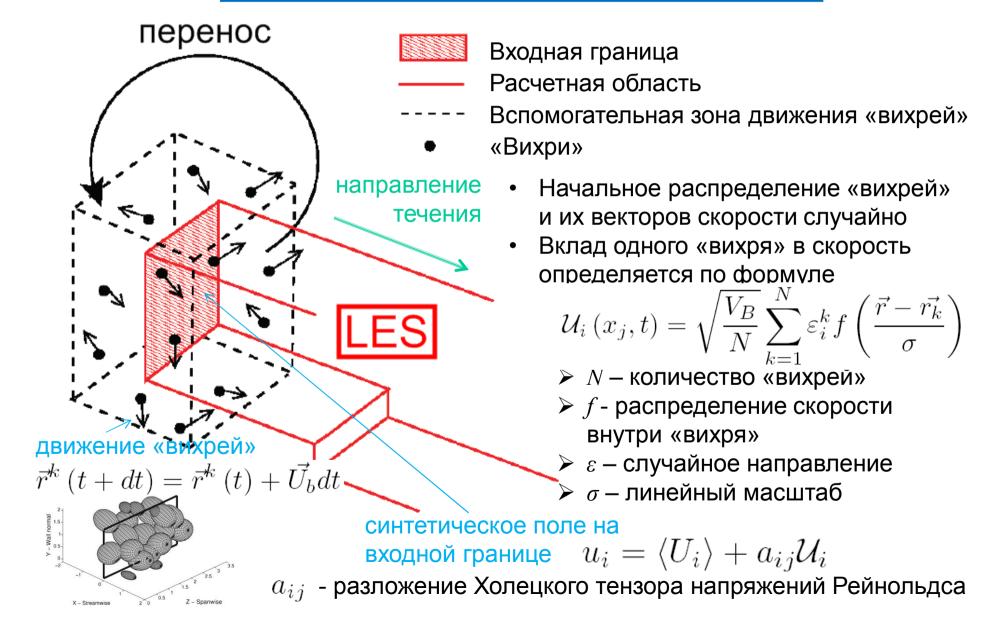
Применение рециклинга: ONERA A-airfoil



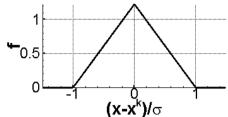
Сравнение с экспериментом


Применение рециклинга: стеклоочиститель Boeing 737

Применение рециклинга: стеклоочиститель Boeing 737



Влияние стеклоочистителя на уровень шума на стекле

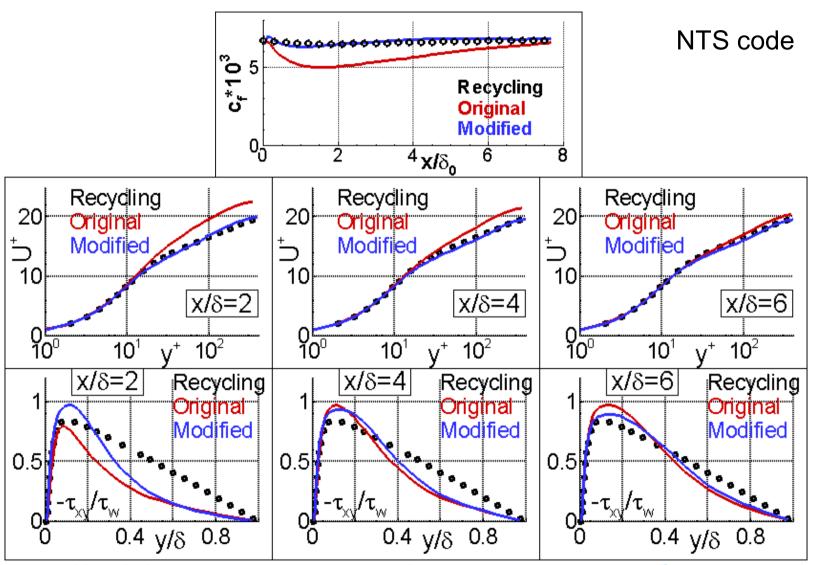

Метод синтетических вихрей Synthetic Eddy Method (SEM)

Метод синтетических вихрей Synthetic Eddy Method (SEM)

Линейный масштаб

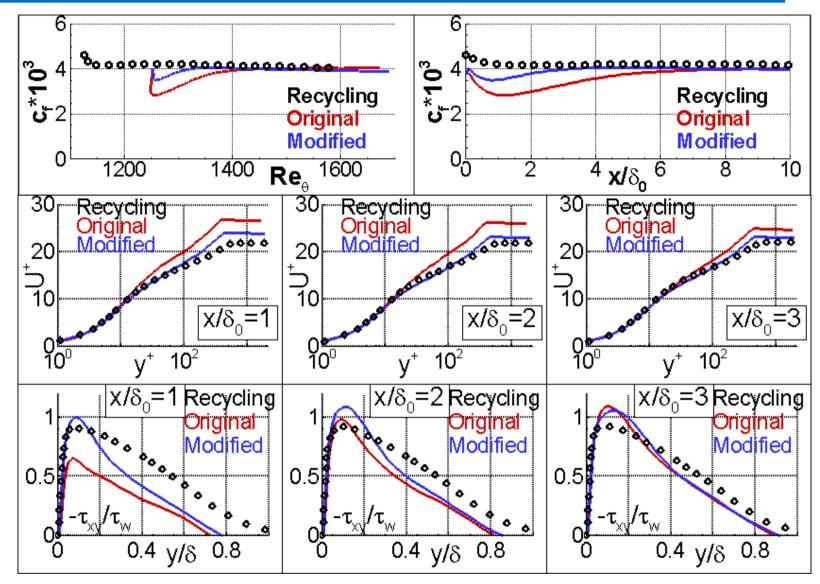
- Распределение скорости внутри «вихря» $f\left(\frac{\vec{r}-\vec{r_k}}{\sigma}\right)$ описывается кусочно-линейной функцией

- Размер «вихрей» зависит только от линейного масштаба σ
 - Линейный масштаб определяется из RANS
 - ✓ В оригинальном методе (Jarrin) для k- ω модели SST


$$\sigma_x = \sigma_y = \sigma_z = \min\left(\max\left(\frac{\sqrt{k_t}}{C_\mu \omega_t}, \triangle\right), \kappa\delta\right)$$

- Недостатки такого определения:
 - ✓ Вихри изотропны во всех направлениях
 - ✓ В логарифмической области размер вихря больше расстояния до стенки, поскольку $\frac{\sqrt{k_t}}{C_{\prime\prime}\omega_t}pprox 2d_w$
- Модифицированный (анизотропный) масштаб позволяет избежать этого

$$\sigma_r = \sigma_y = \sigma_z = \min\left(\max\left(C_{L_t} \frac{\sqrt{k_t}}{C_{\mu}\omega_t}, \triangle\right), \kappa\delta\right) \qquad C_{L_t} < 1$$


$$\sigma_x = \max_{\vec{r} \in inlet} \sigma_r$$

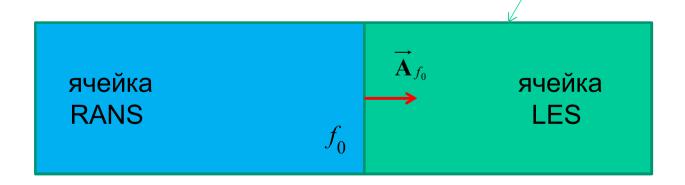
Применение SEM: течение в канале

Коэффициент трения, профили скорости и турбулентных напряжений в различных сечениях

Применение SEM: пограничный слой

Коэффициент трения, профили скорости и турбулентных напряжений в различных сечениях

<u>Метод вихрей</u> <u>Vortex Method (VM)</u>


• Основной метод пакета FLUENT

<u>Метод вихрей</u> <u>Vortex Method (VM)</u>

• На границе между RANS и LES подобластями (в первой LES ячейке) в уравнения движения добавляется объемный источник

$$\vec{\mathbf{S}}_{F,c_0} = \left(<\vec{\mathbf{u}} >_{f_0} \cdot \vec{\mathbf{A}}_{f_0} \right) \vec{\mathbf{u}'}_{f_0} + \left(\vec{\mathbf{u}'}_{f_0} \cdot \vec{\mathbf{A}}_{f_0} \right) < \vec{\mathbf{u}} >_{f_0} + \left(\vec{\mathbf{u}'}_{f_0} \cdot \vec{\mathbf{A}}_{f_0} \right) \vec{\mathbf{u}'}_{f_0}$$

- $\succ f_0$ общая для LES и RANS грань ячейки
- ightharpoonup вектор площади,
- $ightarrow < \stackrel{
 ightarrow}{\mathbf{u}} >_{f_0}$ скорости из RANS подобласти
- ightharpoonup вектор пульсаций скорости

<u>Метод вихрей</u> Vortex Method (VM)

• Пульсации скорости в перпендикулярной потоку плоскости (\mathbf{z} – нормаль к плоскости) определяются суперпозицией N «вихревых точек»

$$\overrightarrow{\mathbf{u}}_{t}'(\overrightarrow{\mathbf{r}},t) = \frac{1}{2\pi} \sum_{i=1}^{N} \Gamma_{i}(\overrightarrow{\mathbf{r}},t) \eta (|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{i}|) \frac{(\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{i}) \times \overrightarrow{\mathbf{z}}}{|\overrightarrow{\mathbf{r}}-\overrightarrow{\mathbf{r}}_{i}|^{2}}$$

- ightharpoonup г положение i-й «вихревой точки»
 - \checkmark Случайно распределено по поверхности интерфейса площадью S
 - ✓ Обновляется по истечении характерного временного масштаба $\tau = k/\epsilon$ (k, ϵ получены из RANS расчета)
- Компоненты вектора пульсации скорости в направлении течения

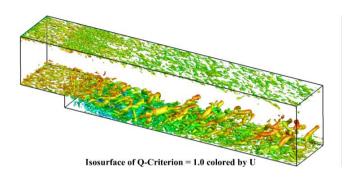
$$u'_{n}(\mathbf{r},t) = -\frac{\mathbf{u}'_{t}(\mathbf{r},t) \cdot \nabla < u_{n} >}{|\nabla < u_{n} >}$$

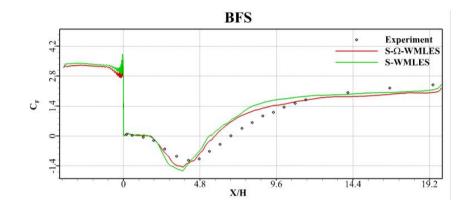
- > Упрощенное влияние двумерного вихря на поле средней скорости
- $> < u_n > -$ средняя скорость в направлении течения (из RANS)
 - ✓ Если $\nabla < u_{_{n}} >= 0$, то эта величина выбирается случайной

<u>Метод вихрей</u> Vortex Method (VM)

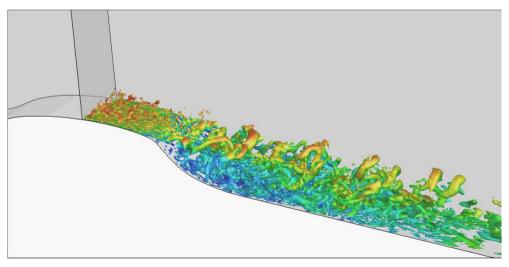
• Циркуляция скорости ищется в следующем виде

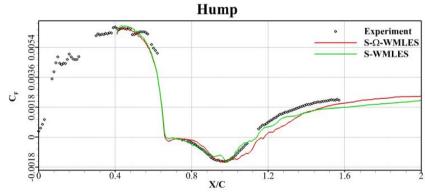
$$\Gamma_i(\mathbf{r},t) = 4\sqrt{\frac{\pi Sk(\mathbf{r},t)}{3N(2\ln(3) - 3\ln(2))}}$$

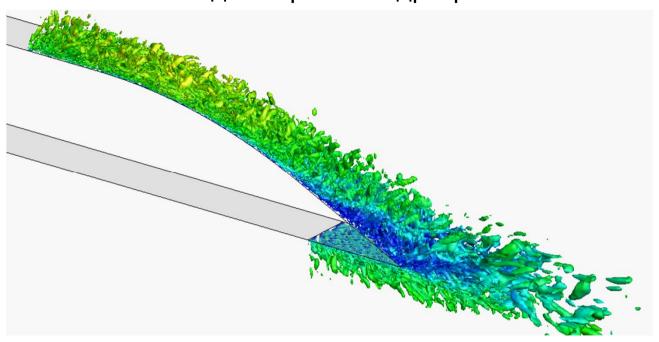

- ightharpoonup Знак циркуляции меняется случайным образом по истечении характерного временного масштаба $\tau = k/\epsilon$
- Функция η , определяет форму вихревой точки

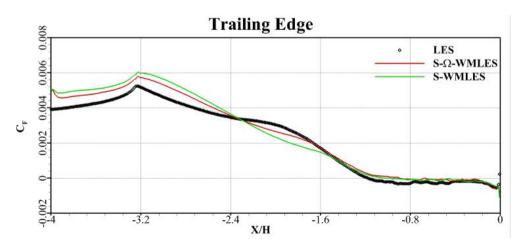

$$\eta(|\vec{\mathbf{r}}|) = \frac{1}{2\pi\sigma^2} \cdot \left(2\exp\left(-\frac{|\vec{\mathbf{r}}|}{2\sigma^2}\right) - 1\right) \cdot 2\exp\left(-\frac{|\vec{\mathbf{r}}|}{2\sigma^2}\right)$$

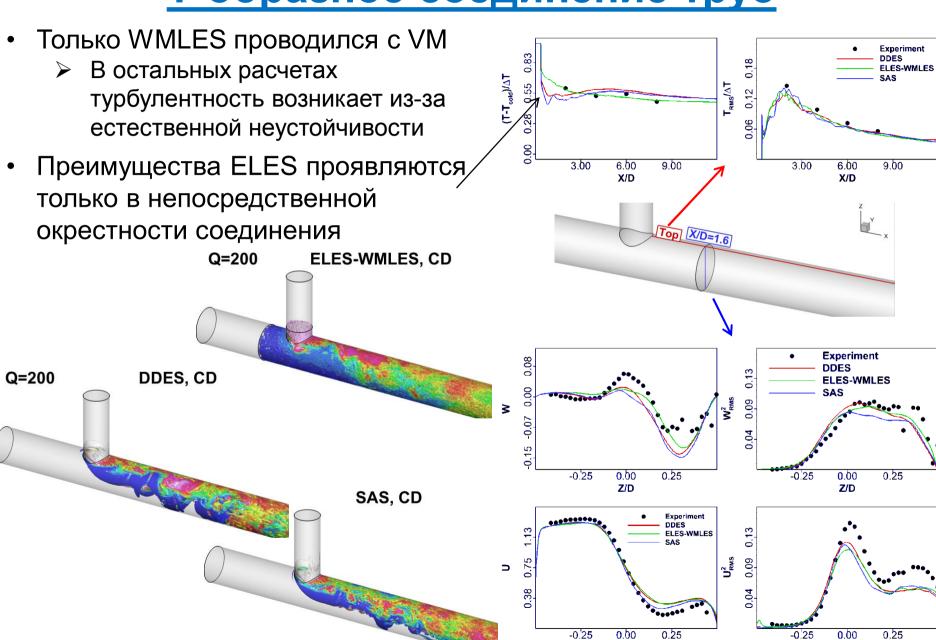
- > Модифицированная функция Гаусса
- ightharpoonup Здесь $\sigma = \max \left(\Delta, \, 0.5 \, C_{\mu}^{-3/4} \, k^{3/2} / \varepsilon \right)$ размер вихря
 - ✓ Ограничен локальным сеточным масштабом


Применение метода вихрей

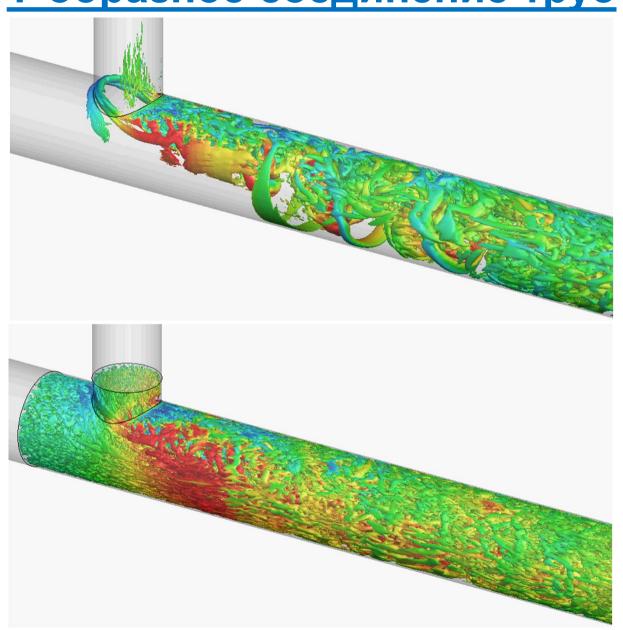

• Канал с внезапным расширением


• Обтекание выпуклости




Применение метода вихрей

• Задняя кромка гидрокрыла


Т-образное соединение труб

Z/D

Z/D

Т-образное соединение труб

Резюме

- Трудность проведения полного WMLES реальных течений приводит к необходимости применения Embedded LES
 - > В большинстве случаев этот подход невозможен без создания турбулентных пульсаций на входной границе в LES область
 - ✓ Аналогичную проблему часто приходится решать при проведении обычных LES расчетов
- Создание турбулентного контента крайне сложная задача
 - > Необходимо, чтобы «искусственные» структуры как можно быстрее перестроились в «настоящие»
- К настоящему времени созданы различные методы создания контента, обеспечивающие высокую точность