Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Гидроаэродинамика, горение и теплообмен»

Курс лекций «Модели физико-химической ГГД и турбулентности. Вихреразрешающие подходы» (http://cfd.spbstu.ru/agarbaruk/lecture/SRS_methods)

Входные условия для LES Часть 2

Гарбарук Андрей Викторович (agarbaruk@mail.ru) 2019 г.

<u>Содержание</u>

- 1. Генератор синтетической турбулентности (Synthetic Turbulence Generator STG)
 - Гидродинамическая версия STG
 - Версия STG для аэроакустики
 - Объемный источник турбулентности

Создание турбулентного контента

- При решении многих задач при помощи вихреразрешающих подходов необходимо создать разрешенную турбулентность
 - ≻ На входе в расчетную область
 - ➤ Ha RANS-LES интерфейсе (Embedded LES)

- Способы задания турбулентного контента
 - ≻ На основе проводимого расчета
 - Периодические граничные условия
 - ✓ Рециклинг
 - ✓ Вспомогательный расчет
 - ✓ Создание «базы данных» нестационарных пульсаций
 - Синтетическая генерация турбулентности
 - ✓ Создание двумерных «вихрей» и их конвекция через входную границу

 $V_{\text{LES}} = V_{\text{RANS}} + v'_{\text{synth}}(k_t, \omega_t)$

 Создание турбулентных пульсаций как суперпозиции пространственно-временных Фурье-мод

<u>Генератор синтетической турбулентности</u>

Synthetic turbulence Generator (STG)

Гидродинамическая версия STG

• Поле скорости на входе в LES область определяется как:

 $\mathbf{u}(\mathbf{r},t) = \mathbf{U}(\mathbf{r}) + \mathbf{u}'(\mathbf{r},t)$

где U(r) - средняя скорость (должна быть известна)

 $\mathbf{u}'(\mathbf{r},t)$ - пульсации, удовлетворяющие известному тензору напряжений Рейнольдса $R_{ii}(\mathbf{r})$

- Это обеспечивается представлением пульсаций в следующем виде $u'_i(\mathbf{r},t) = a_{ij}v'_j(\mathbf{r},t)$
- Величины $v'_i(\mathbf{r},t)$ соответствуют однородной изотропной турбулентности $< v'_i >= 0, < v'_i v'_k >= \delta_{ik}$
- Для получения заданных напряжений Рейнольдса используется разложение Холецкого

$$\mathbf{R} = \mathbf{A}^{T} \mathbf{A} \qquad \mathbf{A} = \{a_{ij}\} = \begin{pmatrix} \sqrt{R_{11}} & 0 & 0 \\ R_{21} / a_{11} & \sqrt{R_{22} - a_{21}^{2}} & 0 \\ R_{31} / a_{11} & (R_{32} - a_{21}a_{31}) / a_{22} & \sqrt{R_{33} - a_{31}^{2} - a_{32}^{2}} \end{pmatrix}$$

Синтетические возмущения

• Возмущения определяются суммой Фурье мод:

$$\mathbf{v}'(\mathbf{r},t) = \sqrt{6} \sum_{n=1}^{N} \sqrt{q^n} \left[\mathbf{\sigma}^n \cos\left(k^n \mathbf{d}^n \cdot \mathbf{r} + \varphi^n + s^n \frac{t}{\tau}\right) \right]$$

Здесь: *N* - количество мод (определяется сеткой)

 $q^{n}(\mathbf{r},t)$ - безразмерная амплитуда моды (определяется из спектра)

kⁿ - волновое число, определяется геометрической прогрессией

$$k^{n} = k_{\min} \cdot (1+\alpha)^{n-1}, \alpha \cong 0.01$$

- \mathbf{d}^{n} случайное направление моды
- σ^{n} случайное направление скорости, которое ортогонально направлению моды ($\sigma^{n} \cdot d^{n} = 0$)
- φ^{n} случайная фаза моды
- *sⁿ* случайная безразмерная частота с гауссовским распределением (среднее значение и стандартное отклонение равны 2π)
- т **глобальный** (единый) масштаб времени

Амплитуды мод

• Безразмерные амплитуды мод

$$q^{n} = \frac{E(k^{n})\Delta k^{n}}{\sum_{n=1}^{N} E(k^{n})\Delta k^{n}}, \qquad \sum_{n=1}^{N} q^{n} =$$

определяются с помощью модифицированного спектра Кармана

l_M - локальный масштаб длины, соответствующий наиболее энергонесущим вихрям

$$E(k) = \frac{(k/k_M)^4}{\left[1 + 2.4(k/k_M)^2\right]^{17/6}} f_\eta f_{\text{cut}}$$

обеспечивает правильное поведение спектра в окрестности колмогоровского масштаба

«обрезает» частоты, которые не *t* разрешаются на сетке (ограничение Найквиста)

Модификация спектра

• Учет вязкой диссипации в окрестности колмогоровского масштаба

$$f_{\eta} = \exp(-(C_{\eta} \cdot k / k_{\eta})^{2})$$

$$k_{\eta} = 2 \cdot \pi / \eta$$

$$\eta = (v^{3} / \varepsilon)^{1/4}$$

$$C_{\eta} = 12$$

$$k_{e}$$

10⁻²

10¹

 $10^2 k$

Ограничение, связанное с разрешением сетки ٠

10

20

30

40

Пространственный и временной масштабы

- Линейный масштаб определяется выражением $l_M = \min\{2d_w, C_l l_t\}, C_l = 3$
 - > Здесь $l_t = k^{1/2} / (C_\mu \omega)$ RANS масштаб турбулентности

Примеры масштабов для канонических сдвиговых течений

- Масштаб времени является глобальным $\tau = C_{\tau} \max\{l_M\}/U_b, C_{\tau} = 2$
 - > Это обеспечивает анизотропию вихрей
 - > Данный подход не является полностью локальным

- Течение рассматривается при двух числах Рейнольдса
 - $ightarrow Re_{\tau} = 400 \qquad Re_{H} = 1.4 \cdot 10^{4}$
 - > $\operatorname{Re}_{\tau} = 18000$ $\operatorname{Re}_{H} = 1.0 \cdot 10^{6}$
- Профили (входные данные для STG) могут быть получены двумя способами
 > Осредненный периодический LES

$$Re_{\tau} = 400$$

Сравнение полей, полученных при различном способе задания входных профилей

Распределение коэффициента трения вдоль канала

Сравнение профилей скорости

• Течение рассматривается при двух числах Рейнольдса

Сравнение турбулентных структур, полученных при помощи STG и рециклинга

Коэффициент трения при двух числах Рейнольдса

 $\operatorname{Re}_{\Theta} \approx 10^3$

 $\text{Re}_{\Theta} \approx 10^4$

Профили скорости, полученные при двух числах Рейнольдса

Применение STG: слой смешения

NTS code

Рассматривается 3 числа Рейнольдса

Re_{\mathcal{P}}≈650, 1500, 3000

Сравнение турбулентных структур, полученных при помощи STG, с результатами LES

X = 0.5

Применение STG: слой смешения

Применение STG: слой смешения

Применение STG: 3D диффузор

- LES превосходит RANS
 - При использовании входных данных от подходящей модели (EARSM) ГСТ не уступает рециклингу

Применение STG: 3D диффузор

Сравнение расчетных профилей скорости с экспериментом

Версия STG для аэроакустики

Проблемы при расчете аэроакустики

- Практически любой генератор турбулентности неприменим для расчета задач аэроакустики без специальной доработки
 - Он является сильным источником ложного шума на RANS-WMLES интерфейсе (из-за внезапного появления вихрей)
- Пример: шум ближнего следа в окрестности задней кромки

- Интенсивность ложного шума от интерфейса существенно превосходит интенсивность реального шума
- Необходима модификация, подавляющая ложный шум
 - Аэродинамика и «истинный» шум не должны быть затронуты

Акустическая модификация STG

- Используется демпфирование давления ("internal" damping layer IDL) в перекрывающейся RANS-WMLES области
 - IDL начинается от начала WMLES области и имеет протяженность около 2 толщин пограничного слоя
 - Внутри IDL давление в WMLES области демпфируется с ипользоавнием поля давления из RANS области

$$p_{LES}^{\text{mod}} = f(x) \cdot p_{LES} + [1 - f(x)] \cdot p_{RANS}$$
$$f = \max\{\min[(x - x_0) / L_{IDL}, 1], 0\}$$

$$L_{IDL} \approx 2\delta_0$$

Влияние на акустические характеристики

- Ложный источник шума практически исчез
- «Настоящий» шум от окрестности задней кромки стал доминирующим

Влияние на акустические характеристики

Animation of acoustic pressure

Влияние на аэродинамические характеристики

• IDL не затрагивает аэродинамические характеристики потока

Конфигурация крыло-закрылок

- Эксперимент ECL
 - Крыло пластина с острой задней кромкой
 - ➤ Закрылок профиль NACA0012, хорда 10 cm
 - ➤ Re_{закрылок}=3.3·10⁵, M=0.15 (U=50 m/s)
- Расчет в рамках зонного RANS-IDDES
 - Генерация искусственной турбулентности на интерфейсе методом ГСТ
 - Использование поглощающих слоев для подавления ложного шума
- Исследованы 2 конфигурации с различными механизмами генерации шума

Экспериментальная установка

Разделение на RANS и IDDES зоны

Трехмерные визуализации

Ближнее акустическое поле

- Разрешенные турбулентные структуры из пограничных слоев на "основном крыле" по разному взаимодействуют с закрылком
 Различная локализация и интенсивность источников звука
- Шум ложного источника на RANS-LES интерфейсе пренебрежимо мал

Изоповерхности закрутки и давление в акустическом диапазоне

Сравнение с экспериментом

Конфигурация А

Сравнение с экспериментом

Спектры давления на стенке

ω

- Ближнее поле
 - > Весьма точное предсказание спектров вдоль всей поверхности

Сравнение с экспериментом

Шум в дальнем поле

Дальнее поле

- Хорошее согласование с экспериментом вне области низких частот
 - ✓ При f < 700 Hz в эксперименте доминирует фоновый шум трубы</p>

Объемный источник турбулентности

Объемный источник турбулентности

 В осредненные по Рейнольдсу уравнения баланса импульса вводится нестационарный Объемный Источник Турбулентности :

$$f_{i} = C_{VSTG} \cdot \rho \cdot U_{0} \cdot u_{i}' \cdot \alpha(x) / L_{VSTG} \qquad C_{VSTG} = 1.1$$

- ➤ U₀ масштаб скорости, L_{VSTG} протяженность источника
- Пульсации скорости u'_i вычисляются при помощи Генератора Синтетической Турбулентности (STG)
- Входные параметры STG (напряжения Рейнольдса) определяются из RANS области вверх по потоку от источника.

Весовая функция

$$f_{i} = C_{VSTG} \cdot \rho \cdot U_{0} \cdot u_{i}' \cdot \alpha(x) / L_{VSTG}$$
$$\int \alpha(x) \cdot dx = L_{VSTG}$$

Данная весовая функция обеспечивает низкий уровень ложного шума от объемного источника

Изменение зависимости от времени в STG

Стандартное определение непригодно для использования в рамках объемного источника

$$\left| v_i'(\vec{r},t) = 2 \cdot \sqrt{3/2} \cdot \sum_{n=1}^N \sqrt{q^n} \cdot \left[\sigma_i^n \cdot \cos(k^n \cdot (d_j^n \cdot x_j) + \varphi^n + s^n \cdot t/\tau) \right] \right|$$

$$\tau = C_{\tau} \cdot l_e^{\max} / U \qquad C_{\tau} = 2$$

Для использования в рамках объемного источника необходима «конвективная» запись зависимости от времени

$$v_i'(\vec{r},t) = 2 \cdot \sqrt{3/2} \cdot \sum_{n=1}^N \sqrt{q^n} \cdot \left[\sigma_i^n \cdot \cos(d_j^n \cdot r_j' + \varphi^n)\right]$$
$$x' = 2 \cdot \pi \cdot (x - U \cdot t) / l_e^{\max} \quad y' = k^n \cdot y \quad z' = k^n \cdot z$$

Сток в уравнении для кинетической энергии турбулентности

Для перевода турбулентной вязкости из RANS в LES в уравнение переноса кинетической энергии турбулентности добавляется объемный сток:

$$f_{k_t} = -\rho \cdot U_0 \cdot \max(v_t - v_t^{sgs}, 0) \cdot \omega_t \cdot \alpha(x) / L_{VSTG}$$

Величина V^{sgs} вычисляется при помощи подсеточной модели Смагоринского с использованием линейного масштаба IDDES:

Сравнение STG и VSTG

Рассматривается сжимаемый турбулентный пограничный слой при следующих параметрах $\operatorname{Re}_L = L \cdot U_0 / \nu = 3.5 \cdot 10^6$ M = 0.5

 $\delta_0 \approx 0.005 \quad \text{Re}_{\Theta 0} \approx 2 \cdot 10^3 \quad L_{LES} \approx 30 \cdot \delta_0$

Влияние длины области источника

Влияние длины области источника

• Увеличение длины области объемного источника приводит к увеличению длины переходной зоны

Влияние длины области источника

- Однако при увеличении длины области объемного источника падает интенсивность ложного шума
 - > Длины области источника должна подбираться для каждой задачи
 - ✓ 2 толщины пограничного слоя являются разумным компромиссом

Расчет крылового профиля DU-96

- Несжимаемое течение, Re= $4 \cdot 10^6$, угол атаки AoA = 13°
- Гибридный SST RANS-IDDES расчет
 - Цель расчета проверить влияние расположения области объемного источника на результат

Расчетные сетки

- Были рассмотрены 2 варианта с различным положением RANS-LES перехода
- При x_{VSTG}/c = 0.2 сетка гораздо мельче, поскольку тоньше пограничный слой
 - При расчете WMLES шаги сетки определяются толщиной пограничного слоя

Положение VSTG

$$x_{VSTG}/c = 0.4$$

$$x_{VSTG}/c = 0.2$$

Визуализация течения

Картина течения практически не зависит от положения области объемного источника

Контуры завихренности

Сравнение с RANS

SST RANS предсказывает более массированный отрыв

Величина зоны отрыва

Сравнение с RANS

Сравнение с RANS

Профили скорости

Сравнение Fluent и NTS

- Расчет крылового профиля NACA4412
 - ➢ Re=1.5·10⁶, AoA=13.87°
 - ➢ FLUENT: двухстадийный SST RANS alg. WMLES расчет
 - ► NTS: одностадийный SST RANS SST IDDES расчет
 - В обоих случаях переход осуществлялся при х/с=0.2

Сравнение Fluent и NTS

Турбулентные структуры во Fluent несколько – более крупные из-за более диссипативной схемы

Сравнение Fluent и NTS INIFORM FREESTREAM NACA 4412 TRAILING EDGE SEPARATION • Несмотря на различие в подходах результаты Fluent и NTS практически совпадают • WMLES существенно хуже согласуется с экспериментом, чем SST **VMLES:** Fluent SST-IDDES: NTS WMLES: Fluent 2D SST 2 SST-IDDES: NTS EXP 0 -3 2D SST . 100 ů 10,000,000,0 -2 -Q-Q-Q-Q-Q-Q-Q ŭ -1 0 00 00 0 0 0.6 0.8 0 0.2 0.4 0 0.2 0.4 0.6 0.8 X/C X/C WMLES; Fluent **IDDES: NTS** 2D SST • EXP 0.07 O 0.061 → 0.051 0.04 0.027 0.014 0

0.675

0.73

0.785

0.842

 $U/U_{ref}^{*} + X/C$

0.897

0.953

1

Резюме

- При выборе метода создания турбулентного контента необходимо учитывать его «технологичность»
 - Методы, построенные на суперпозиции Фурье-мод лучше других подходят для современных кодов
- При расчете акустических задач необходимы специальные модификации методов генерации
- Задание пульсаций при помощи объемного источника является перспективным альтернативным подходом