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Computation of trailing-edge noise at low
Mach number using LES and acoustic analogy

By Meng Wang

1. Motivation and objectives

The present work is a continuation of the work described in the previous annual
research briefs (Wang 1996, 1997). The objectives of the project are twofold: (1) to
develop numerical prediction methods for trailing-edge noise, using a combination
of large-eddy simulation (LES) and Lighthill’s theory; and (2) to generate a reliable
numerical database for the study of noise source mechanisms.

Trailing-edge aeroacoustics is of importance in both aeronautical and naval ap-
plications. It is, for example, related to airframe noise, rotor and propeller noise,
and noise from underwater vehicles. When turbulent boundary layer eddies are
convected past the trailing edge of a large (relative to acoustic wavelength) body,
their aeroacoustic source characteristics are modified by the edge, and a more effi-
cient source results (Ffowcs Williams & Hall 1970; Crighton & Leppington 1971).
This scattering mechanism produces strong, broadband radiation to the far-field.
If there is coherent vortex shedding, typically associated with blunt trailing edges
and/or high angles of attack, tonal or narrowband noise is also present. In addi-
tion, the highly unsteady edge flow may cause low frequency vibration of an elastic
strut and hence noise radiation. To determine the structural vibration modes, the
space-time characteristics of surface-pressure fluctuations are frequently required as
a forcing-function input.

The case under study corresponds to the experiment conducted by Blake (1975).
The flow configuration is shown in Fig. 1. A flat strut with a circular leading
edge and an asymmetrically beveled trailing-edge of 25 degrees is placed in a uni-
form stream at zero-degree angle of attack. The strut’s chord is C = 21.125h and
span is L = 23.5h, where h is the thickness. The Reynolds number based on free-
stream velocity U∞ and the chord is 2.15 × 106. The free-stream Mach number
M = U∞/c∞ ≈ 0.088. Statistical measurements of velocity and fluctuating surface
pressure fields in the trailing-edge region are available for comparison with compu-
tational results. Acoustic measurements were not made in this experiment although
they were made in a separate experiment (Blake & Gershfeld 1988) under different
flow conditions, using trailing-edges similar but not identical to the one in Fig. 1.

In the next section we first summarize the LES of the near-field, which pro-
vides the acoustic source functions (the fluctuating Reynolds stress) as well as the
space-time characteristics of surface pressure fluctuations. The statistics are fully
converged and should supersede the preliminary results presented in Wang (1997).
Next, we discuss the computation of the radiated far-field noise. The calculations
are based on an integral-form solution to the Lighthill equation with a hard-wall
Green’s function (Ffowcs Williams & Hall 1970).
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Figure 1. Flow configuration and computational domain. The experimental
measurement stations B-G are located at x/h = −4.625, −3.125, −2.125, −1.625,
−1.125, and −0.625, respectively.

2. Accomplishments

2.1 Update on near-field LES

2.1.1 Methodology

A detailed description of the numerical algorithm and procedure can be found in
Wang (1997). The spatially filtered, unsteady, incompressible Navier-Stokes equa-
tions are solved in conjunction with the dynamic subgrid-scale model (Germano et
al. 1991; Lilly 1992). The numerical scheme employs second-order central differ-
ences in the streamwise and wall-normal directions and Fourier collocation in the
spanwise direction. A semi-implicit (Crank-Nicolson for viscous terms and third
order Runge-Kutta for convective terms), fractional-step scheme is used for time
advancement. The pressure Poisson equation is solved at each Runge-Kutta sub-
step using a multi-grid iterative procedure.

Simulations are conducted in a computational domain containing the aft section
of the strut and the near wake, as illustrated schematically in Fig. 1. Except for
the inlet, the other three sides of the domain have been truncated for clarity. The
actual domain size is approximately 16.5h, 41h, and 0.5h, in the streamwise (x1),
wall normal (x2), and spanwise (x3) directions, respectively. The computational
grid, defined in curvilinear coordinates in the x1-x2 plane and Cartesian coordinate
in x3, uses a total of 1536 × 96 × 48 points, with appropriate clustering in the
near-wall and trailing-edge regions. Of the 1536 streamwise grid points, 640 are
distributed along the upper surface, 512 along the lower surface, and 2× 192 along
the wake line (branch cut). The maximum grid-spacing along the strut surface,
measured in wall units, is ∆x+

1 ≈ 62, ∆x+
3 ≈ 55, and ∆x+

2 ≈ 2. The simulation,
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Figure 2. Profiles of the normalized mean velocity magnitude as a function of
vertical distance from the upper surface, at stations (from left to right) C, D, E,
F , and G. LES; • Blake’s experiment. Individual profiles are separated by a
horizontal offset of 1 with the corresponding zero lines located at 0, 1, ..., 4.

running at a maximum CFL number of 1.5, requires 200 single processor CPU
hours on a CRAY C90 to advance one flow time across the streamwise domain
length, and over 1000 CPU hours for the complete simulation. The velocity and
pressure statistics presented below are collected over a period TsU∞/h ≈ 60.62, or
3.67 flow-through times based on free-stream velocity.

The inflow velocity profiles outside the boundary layers are provided by an auxil-
iary RANS calculation in a C-grid domain enclosing the entire strut, using Menter’s
(1993) SST k-ω model. Within the turbulent boundary layers, the time-dependent
inflow velocities are generated from two separate LES’s of flat-plate boundary layers
with zero pressure gradient, using the method described by Lund, Wu & Squires
(1998). The local momentum thickness and Reynolds number are matched with
those from the RANS simulation. At the downstream boundary the convective out-
flow condition (Pauley, Moin & Reynolds 1988) is applied. The top and bottom
boundaries are placed far away from the strut to minimize the impact of the im-
posed velocities obtained from RANS calculations. A no-slip condition is applied
on the surface of the strut.

The letters B, C, D, E, F , and G in Fig. 1 indicate measurement stations in
Blake’s experiment. They are located at x1/h = −4.625, −3.125, −2.125, −1.625,
−1.125, and −0.625, respectively (the Cartesian coordinate system originates from
the trailing edge). In Section 2.1.2 representative results are presented at these
stations, and comparisons made with experimental values.

2.1.2 Simulation results

In Fig. 2, the magnitude of the mean velocity U = (U2
1 +U2

2 )1/2 normalized by its



94 M. Wang

(x
2
−
x

2
s
)/
h

u2
1

1/2
/Ue

0 0.15 0.30 0.45 0.60 0.75
0

0.2

0.4

0.6

0.8

Figure 3. Profiles of the rms streamwise velocity fluctuations as a function of
vertical distance from the upper surface, at stations (from left to right) B, D, E,
F , and G. LES; • Blake’s experiment. Individual profiles are separated by
a horizontal offset of 0.15 with the corresponding zero lines located at 0, 0.15, ...,
0.60.

value at the boundary-layer edge Ue is plotted as a function of vertical distance from
the upper surface at streamwise stations (from left to right) C-G. The solid lines are
from LES, and the symbols represent Blake’s experimental data. Good agreement
with the experimental results is obtained at stationC and all the upstream locations.
At stations D and E, where the boundary layer is subject to strong adverse pressure
gradient (cf. Fig. 4) but remains attached to the wall, the LES profiles are more full
in the near-wall region than those from the experiment. Further downstream, as an
unsteady separated region develops, the discrepancy diminishes, and the computed
profiles compare well again with the experimental results at stations F and G.

Figure 3 compares the computational and experimental profiles of the rms stream-
wise velocity fluctuations at stations (from left to right) B, D, E, F , and G. The
agreement between the LES and the experimental results is quite good except in
the near-wall region and at the last two stations. The experimental profiles are
seen to consistently miss the near-wall peaks known to exist in turbulent boundary
layers, suggesting a possible lack of spatial resolution or high-frequency response
as the probe approaches the wall. The large discrepancy observed in the separated
region (stations F and G) may be caused by both simulation and measurement
errors. In general, hot-wire readings become increasingly difficult to interpret if the
rms turbulence intensity exceeds 30% of the local mean velocity (Bradshaw 1971),
which is the case in the separation bubble where the mean velocity is very small
(cf. Fig. 2).

The dimensionless mean pressure (= Cp/2) is depicted in Fig. 4 as a function of
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Figure 4. Mean surface pressure distribution near the trailing edge. LES;
• Blake’s experiment.

x1/h. The comparison between the LES and experimental results is reasonable in
the trailing-edge region but unsatisfactory upstream of it. The experimental data
plotted here differ from those documented by Blake (1975) and referenced by Wang
(1997) earlier. The new data set, based on the original record of his 1975 experi-
ment, was provided by Blake (1998, private communication) after the completion of
the present LES. Of particular interest is the additional data point measured on the
lower surface (the upper point at x1/h = −7.125 in Fig. 4), which sheds some light
on the fidelity of inflow velocity conditions used in the simulation. Based on this
point and assuming that the mean pressure is approximately constant on the lower
surface as suggested by the LES prediction, it is evident that the lift and hence
circulation in the experiment are much smaller than those in the LES. Since the
circulation in the LES is imposed through the unequal mean velocity profiles on the
two sides of the strut at the inlet boundary (cf. Fig. 2 in Wang 1997), one concludes
that the inflow velocity difference has been exaggerated. Indeed, an estimate using
Cp and the Bernoulli equation indicates that in the experiment the inflow veloc-
ities at the boundary layer edges are Uuppere ≈ 1.071U∞ and U lowere ≈ 1.032U∞,
compared with Uuppere ≈ 1.093U∞ and U lowere ≈ 0.979U∞ used in the LES. Unfor-
tunately, the several RANS calculations conducted earlier using different turbulence
models all predict circulations much larger than the experimental value. The one
chosen to provide the LES inflow profiles actually has the smallest circulation.

Figure 5 shows the space-time correlations of the upper-surface pressure fluctua-
tions as a function of temporal and spanwise separations at stations C-G and the
trailing edge (actually, one half grid spacing from the edge on the staggered mesh).
The iso-correlation contours show relatively small variations of the spanwise spatial
and temporal scales from stations C to E underneath the attached boundary layer
with adverse pressure gradient. A dramatic increase of spatial and temporal scales
occurs, however, after the turbulent boundary layer becomes separated (stations
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Figure 5. Contours of space-time correlation of the upper-surface pressure fluc-
tuations as a function of spanwise and temporal separations, at stations (a) C; (b)
D; (c) E; (d) F ; (e) G; and (f) trailing-edge. Contour values are from 0.1 to 0.9,
with increment 0.1.

F , G, and the trailing edge). The wall pressure fluctuations inside the separated
zone are dominated by the effect of large scale fluid motion. The small scale eddies
from the upstream boundary layer are lifted away from the wall and hence their
contribution to the wall pressure is diminished. At the trailing edge, the correlation
contours exhibit some features of small-scale correlation superimposed on the ex-
tremely large overall scales, because of the contribution from the attached boundary
layer on the lower side of the edge.

It is noted that the correlation contours in Fig. 5 show insufficient drop at max-
imum spanwise separations inside the separated region, particularly at station G
and the trailing edge. This suggests that the computational domain is too restric-
tive in the spanwise direction to allow the development of fully three-dimensional
large-scale flow structures. The effect of the small spanwise domain size on the low-
order flow statistics described above has not been investigated. In addition, it has
important implications to the acoustic prediction, as will be discussed in Section
2.2.

Figure 6 depicts the frequency spectra of wall pressure fluctuations calculated
from LES and compares them with those from Blake’s experiment. The variables
used for normalization are U∞, h, and the dynamic pressure q∞ = ρU2

∞/2. The
calculated spectra agree relatively well with the experimental data at most stations
except station G, where the spectrum is significantly overpredicted. One notices
that before the boundary layer separation (stations C-E), the LES spectra drop
off more quickly than the experimental spectra at the high frequency end due to
limited grid resolution and finite difference errors. The high frequency content
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Figure 6. Frequency spectra of wall pressure fluctuations at stations (a) C; (b)
D; (c) E; (d) F ; (e) G; and (f) trailing-edge. LES; • experiment.

corresponds to fine spatial structures not resolved on the simulation grid. After the
separation, however, the small scale effect is diminished, and the LES is capable of
capturing the entire frequency range measured by the experiment. The spectrum
at the trailing edge, where no experimental data are available, again consists of
contributions from the upper (separated) and lower (attached) boundary layers.
The latter is responsible for the high frequency peak shown in the figure.

2.2 Noise computation

2.2.1 Formulation

The noise radiation to the far-field is calculated in the framework of Lighthill’s
theory (Lighthill 1952). Crighton & Leppington (1971) show that the trailing-
edge noise field has a non-multipole character, which is caused by the fact that the
scattering surface is noncompact relative to the acoustic wavelength. To account for
the surface reflection effect, a hard-wall Green’s function, whose normal derivative
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Figure 7. Coordinate system for calculating the radiated noise of flow past the
trailing-edge of a semi-infinite flat plate.

vanishes on the surface, must be employed in an integral solution to the Lighthill
equation.

When the acoustic wavelength is much longer than the thickness of the strut but
much shorter than the chord (h� λa � C), the strut is reasonably approximated
by a semi-infinite plane with zero thickness, for which the far-field Green’s function
is known analytically. The far-field pressure perturbation in the frequency domain
can be written in the form (Ffowcs Williams & Hall 1970)

p̂a(x, ω) ≈ 2e−i
π
4

π
1
2

k2 sin
θ

2

∫
V

eikR

4πR
(sinφ)

1
2

(2kr0)
3
2

{
ρ∞
( ̂u2

θ − u2
r

)
sin

θ0

2

−2ρ∞ûruθ cos
θ0

2

}
d3y. (1)

where the caret denotes temporal Fourier transform, ω is the circular frequency,
and k = ω/c∞ the acoustic wavenumber. The velocity components ur and uθ are
defined in a cylindrical-polar coordinate system shown in Fig. 7. Position vectors x
(r, θ, z) and y (r0, θ0, z0) represent far-field and source-field points, respectively,
with R = |x− y| and sinφ = r/[r2 + (z − z0)2]

1
2 .

In addition to the approximate Green’s function, several assumptions are implied
in (1). The viscous stress is assumed unimportant as a noise source at high Reynold
numbers. The convection, refraction, and scattering of acoustic waves by the tur-
bulent flow are ignored, which is justifiable in the low Mach number limit except
at very high frequencies and/or at θ values close to zero or π. Furthermore, the
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integrand in (1) is derived for a source region well within one acoustic wavelength
(kr0 � 1 or r0 � λa). Although only eddies within this distance contribute to the
amplified scattering noise, from a computational point of view it may be desirable
to integrate further out for better convergence (boundary-independence of the vol-
ume integral), given the (kr0)−3/2 decay of the Green’s function factor. A more
general integral expression valid for all r0 values is given in Wang (1996). However,
noise calculations using both integrals show only a small difference, and hence the
simpler expression (1) will be used here.

2.2.2 Evaluation of source terms
In the context of LES, the Lighthill stress is formally expressed as T ij = ρuiuj +

ρτij, where the overline indicates spatial filtering and the entropy and viscous terms
are ignored. It consists of nonlinear interactions among resolved scales (first term)
and the subgrid scale contribution to the resolved scales (second term). Piomelli,
Streett, & Sarkar (1997) examined the effect of small scales on sound generation
using a channel flow DNS database. In the present computation, the Lighthill stress
terms are evaluated using the resolved velocity components only, assuming that the
subgrid scale contribution is relatively small. It is noted that the dynamic SGS
model used in the source-field simulation gives only the anisotropic part of the
SGS stress tensor, τij − δijτkk/3, and thus the normal stress components cannot be
determined. If one desires to include ρτij in the noise calculation, an alternative
formulation of the SGS model such as the dynamic localization model (Ghosal et
al. 1995), which solves an additional equation for the subgrid-scale kinetic energy
τkk/2, should be used.

To compute the source terms ̂u2
θ − u2

r and −2ûruθ in (1), the Cartesian velocity
components u1 and u2 on the entire computational grid are saved every 10 time
steps during the source-field LES. The sampling resolution ∆tsU∞/h ≈ 0.029. The
total record of N = 1152 time samples, covering a period TsU∞/h ≈ 33.47, is
divided into 8 segments with a 50% overlap. For each segment, which contains 256
samples, the source quantities u2

θ − u2
r and −2uruθ are computed. The aperiodic

time series are multiplied by the Hanning window function, and discrete Fourier
transforms are performed. To compensate for the energy loss due to the Hanning
window tapering, the resulting Fourier coefficients are renormalized such that the
power spectrum computed from them, when integrated over all positive frequencies,
gives the mean-square fluctuations of the original function.

As a result of the above procedure, 8 sets of the source terms as a function of
frequency ω and spatial coordinates y are available. Each set can be used in (1)
to give a sample noise field. The noise power spectra are obtained as the ensemble
average of the spectra from all sample fields.

Figure 8 depicts the magnitude of the Reynolds shear-stress source term (nor-
malized), | − 2ûruθ|/U2

∞, in the trailing-edge region at 4 selected frequencies. The
other source term representing the normal stress behaves in a qualitatively similar
manner. The source magnitudes are averaged over the 8 samples and the spanwise
direction. The contour lines show that the spatial distribution of the acoustic source
varies significantly with frequency. The low frequency source, associated with the
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Figure 8. Contours of the magnitude of the acoustic source term −2ûruθ/U2
∞ at

four different frequencies. Contour levels (×102): (a) 0.20 to 3.40, with increment
0.20; (b) 0.20 to 3.00, with increment 0.20; (c) 0.10 to 1.40, with increment 0.10;
(d) 0.03 to 0.42, with increment 0.03.

large scale unsteady flow structures, exhibits strength in a large region including
the wake (cf. Figs. 8a and 8b). The largest values are found in the shear layers em-
anating from the upper (separated) and lower (attached) boundary layers. As the
frequency increases (Figs. 8c and 8d), the source distribution becomes more con-
centrated, particularly in the lower shear layer close to the trailing edge. The wake
region farther from the edge contributes little to the high-frequency source terms
due to a lack of the corresponding small-scale flow structures. In the convolution
integral (1), the source terms shown in Fig. 8 are weighted by a (kr0)−3/2 factor,
and thus the effective noise source is much more concentrated in the trailing-eddy
region.

2.2.3 Radiated field

Trailing-edge noise from a source region consisting of the computational domain
can be readily obtained by evaluating the volume integral (1) numerically. As an
example, Fig. 9 shows the contours of the real part of the acoustic pressure p̂a/P∞
in the x1-x2 plane crossing the mid-span, for ωh/U∞ = 1.68 and 6.75. The trailing
edge is located at x1 = x2 = 0, and the Mach number used in this example is
M = 0.1. In the figure the frequency dependence of the wavelength and amplitude
is evident, as is the distinct edge-noise directivity pattern dictated by the sin θ

2
factor in (1). The noise spectra can be obtained from the product of p̂a and its
complex conjugate. It should be mentioned that Fig. 9 is based on a single sample
of source functions. Statistical averaging can be done after the noise spectra from
multiple source samples have been obtained.
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Figure 9. Contours of the real part of the acoustic pressure p̂a(x, ω)/P∞ from
sources within the LES Domain at M = 0.1, at two different frequencies. Contour
levels (×106): (a) −5.70 to 3.90, with increment 0.60; (b) −0.255 to 0.255, with
increment 0.03.

In a typical LES, the spanwise width Lz of the computational domain is only a
small fraction of the actual span L. For example, L/Lz = 47 for the present LES
of Blake’s experiment. To predict the frequency spectrum of the sound pressure
radiated from the entire span, one requires knowledge about the spanwise coherence
of the source field. Kato et al. (1993) discussed this issue in their calculation of
noise from a cylinder wake. Let Λz = Λz(ω) denote the coherence length for a given
frequency, two limiting cases can be found for which the total noise is well defined.

(a) If Lz ≥ Λz, source regions separated by the computational box size radiate
in a statistically independently manner. Hence, the total noise spectrum is the sum
of contributions from L/Lz independent source regions along the span: Φtotalpa ≈
(L/Lz) Φpa.

(b) If L ≤ Λz, the source is coherent along the entire span (2-d source). Based
on (1), if the spanwise variation of the retarded time is ignored, p̂totala ≈ (L/Lz) p̂a,
and hence Φtotalpa ≈ (L/Lz)

2 Φpa.
In the intermediate regime Lz < Λz < L, an accurate prediction of the total

sound pressure is difficult to achieve. The computational domain is too small to
accommodate the spanwise flow scales, and thus the acoustic source functions are
not computed reliably. The rigorous remedy is to increase the computational box
size Lz so that case a or b described above applies. This is, however, often pro-
hibitively expensive. Kato et al. (1993) resorted to an ad hoc approach in which
Λz is approximated by extrapolating from the slowly-decaying coherence function,
and a hybrid formula based on cases a and b is used to estimate the total noise
radiation.
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Figure 10. Frequency spectra of the far-field noise at r/h = 150 and M = 0.088.
Spectrum calculated from a partial source field (the LES domain); total

spectrum assuming Lz ≥ Λz; total spectrum assuming L ≤ Λz; total
spectrum using periodic source extension in span.

Another ad hoc approach employed by previous investigators is the periodic ex-
tension of the computed source field to the entire span. The volume integral (1) is
then taken over the expanded domain. This approach is essentially equivalent to
the approach used in case b described above except that the integration takes into
account retarded-time variations along the span. Manoha, Troff & Sagaut (1998)
used this method in their calculation of the noise from a blunt trailing edge of a flat
plate.

In Fig. 10 several noise spectra are plotted as a function of frequency at r/h = 150
and M = 0.088. Note that the normalization factor for the spectra includes Mach
number dependence and directivity. The solid line is computed from the thin slab
of the source field within the LES domain. The total noise spectrum under the
incoherent source assumption (case a) is given by the dashed line, whereas the
coherence source calculation (case b) gives the chain-dashed line (the top curve).
These two curves serve as the lower and upper bounds of the true noise spectrum.
The spectrum calculated using periodic source extension in x3, shown as the dotted
curve, coincides with that from the coherence-source calculation at low frequencies
but drifts to lower values at higher frequencies due to the increasing importance of
retarded time variations.

The frequencies corresponding to λa = C and h are given by ωh/U∞ ≈ 3.38 and
71.4, respectively. They define the frequency range in which the half-plane Green’s
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function is approximately valid. Outside this range other appropriate Green’s func-
tions should be used. In particular, when λa � C, the strut is acoustically compact
and thus the free-space Green’s function is applicable. Curle’s (1955) integral solu-
tion to the Lighthill equation provides a useful tool for noise computation (Wang,
Lele, & Moin 1996). At high frequencies (λa ≤ h), the Green’s function must in
principle be tailored to the specific trailing-edge shape. However, the potential accu-
racy improvement is limited, given the relatively small tip-angle of the edge and the
competing high-frequency errors caused by the neglect of flow-acoustic interaction
and subgrid-scale contribution to the acoustic source functions. The local spectrum
peak in Fig. 10 near ωh/U∞ = 23.6 is caused by the diffraction of boundary layer
eddies from the lower side.

As pointed out previously, Blake’s (1975) experiment does not include acoustic
measurements, and thus a direct comparison with the numerical predictions cannot
be made. As a qualitative assessment, the acoustic pressure spectra from a different
experiment (Blake & Gershfeld 1988) have been used to compare with the spectra
shown in Fig. 10. The experimental data (not shown) are found to be concentrated
at the low frequency end and lie between the coherent-source and incoherent-source
predictions.

A complete determination of the far-field noise requires the spanwise coherence
of the source-field to be computed. For a given field quantity q, the coherence is
defined as

γ2(x, r, ω) =
|Φqq(x, r, ω)|2

|Φqq(x, 0, ω)||Φqq(x+ r, 0, ω)| , (2)

where the cross spectrum function Φqq is the Fourier transform of the space-time
cross correlation function

Φqq(x, r, ω) =
∫ ∞
−∞
〈q(x, t)q(x+ r, t+ τ)〉e−iωτdτ. (3)

An estimate of γ2 is made based on the fluctuating surface pressure (q ≡ p) in
the vicinity of the trailing edge under the premise that it is representative of the
overall coherence of the volume distribution of source terms in (1). Figure 11 shows
the spanwise pressure coherence on the upper surface, one half grid spacing from
the trailing edge. The left plot shows the iso-coherence contours as a function of
frequency and spanwise separation. The coherence is seen to drop rapidly with
spanwise separation except at the low frequency end. The coherence at selected
low frequencies is depicted in the right plot as a function of spanwise separation.
It is observed that for ωh/U∞ ≥ 5.26, the coherence exhibits sufficient drop within
the computational domain, and thus Φtotalpa ≈ (L/Lz) Φpa applies. The dashed
curve in Fig. 10 gives the total noise spectrum. Below this frequency, however, the
coherence length is larger than the spanwise dimension of the computational box,
and the total noise cannot be determined with certainty. Given the flat shape of γ2

at large separations shown in Fig. 11 (the solid and dashed lines), it is not possible
to obtain the coherence lengths by extrapolation as in the case of Kato et al. (1993).
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Figure 11. Spanwise coherence of the fluctuating surface pressure on the upper
surface near the trailing edge. (a) Contour plot (contour levels from 0.1 to 0.9,
with increment 0.10). (b) Coherence at frequencies ωh/U∞ ≈ 1.75 ( ), 3.51
( ), 5.26 ( ), 7.01 ( ), and 8.76 ( ).

3. Summary and future work

A large-eddy simulation has been carried out for turbulent boundary layer flows
past an asymmetrically beveled trailing-edge of a flat strut at a chord Reynolds
number of 2.15 × 106. The asymmetric edge of 25 degree tip-angle produces a
separated boundary layer on one side and an attached boundary layer on the other.
The computed mean and fluctuating velocity profiles compare reasonably well with
the experimental measurements of Blake (1975). The discrepancies observed at some
stations (D, E for mean velocity and F , G for fluctuating velocity) may have been
caused by inadequate inflow velocity conditions and small computational domain
size as well as possible experimental errors near the wall and inside the separated
region.

The inflow velocity profiles constitute a major uncertainty for the LES since they
are not available from Blake’s experiment. Based on the additional mean surface
pressure data provided recently by Blake, it appears that the RANS calculations
used to provide the inflow mean velocities have exaggerated the difference between
velocities on the two sides of the strut, and hence the circulation. This is evidenced
by the significant discrepancy between the mean surface pressure distributions from
LES and the experiment.

Thus, future simulations should use more accurate inflow velocity profiles associ-
ated with a smaller circulation. The exact profiles are, however, difficult to obtain
without additional experimental measurements. While it is possible to deduce from
the experimental Cp data the approximate velocity magnitudes at the boundary
layer edges near the inflow boundary, this approach does not give the detailed pro-
files extending to the outer computational boundary.
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The objectives of the trailing-edge flow LES are to predict the space-time charac-
teristics of surface pressure fluctuations and to provide the acoustic source functions
for the far-field noise calculation. The frequency spectra of surface pressure fluc-
tuations obtained from LES agree well with experimental measurements at most
stations. The cause for the significant overprediction at station G needs to be fur-
ther investigated. The space-time correlations of the fluctuating surface pressure
demonstrate a dramatic increase in temporal and spanwise spatial scales beneath
the unsteady separation region. The correlation functions near the trailing-edge
show insufficient drop at maximum spanwise separations, suggesting the need for a
wider computational domain.

The far-field acoustics is computed from an integral-form solution to the Lighthill
equation using a hard-wall Green’s function (Ffowcs Williams & Hall 1970). The
Green’s function is approximated by that for an infinitely thin half-plane, given
the thin foil (relative to acoustic wavelength) and the small included angle of the
trailing-edge. The acoustic evaluation is performed in the Fourier frequency domain
and requires the storage and processing of large amount of time-dependent, three-
dimensional source field data obtained from LES. Computations have been carried
out to determine the source-term characteristics and the far-field noise spectra. To
accurately predict the noise radiation from the entire span using a partial source field
included in the LES domain, it is required that the spanwise domain size be larger
than the coherence length of the source field in that direction. The present LES is
found to be adequate for predicting noise radiation over a wide frequency range. At
low frequencies, however, the spanwise source coherence estimated based on surface
pressure fluctuations does not decay sufficiently. This issue will be addressed in
future simulations using an expanded computational domain.
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