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Direct Numerical Simulation
of a Fully Developed Turbulent
Channel Flow With Respect to the
Reynolds Number Dependence
Direct numerical simulation (DNS) of a fully developed turbulent channel flow for various
Reynolds numbers has been carried out to investigate the Reynolds number dependence.
The Reynolds number is set to be Ret5180, 395, and 640, where Ret is the Reynolds
number based on the friction velocity and the channel half width. The computation has
been executed with the use of the finite difference method. Various turbulence statistics
such as turbulence intensities, vorticity fluctuations, Reynolds stresses, their budget terms,
two-point correlation coefficients, and energy spectra are obtained and discussed. The
present results are compared with the ones of the DNSs for the turbulent boundary layer
and the plane turbulent Poiseuille flow and the experiments for the channel flow. The
closure models are also tested using the present results for the dissipation rate of the
Reynolds normal stresses. In addition, the instantaneous flow field is visualized in order to
examine the Reynolds number dependence for the quasi-coherent structures such as the
vortices and streaks.@DOI: 10.1115/1.1366680#

Introduction
With the aid of recent developments in the super and parallel

computers, the direct numerical simulation~DNS, hereafter! of
turbulence is now being increasingly performed.

The DNS is a time-dependent and three-dimensional numerical
solution in which the governing equations are computed as accu-
rately as possible without any turbulence models introduced. The
DNS provides various information, such as velocity, pressure, and
their derivatives at any time and point in the instantaneous flow
field. These are extremely difficult to be measured in experiments.
The first attempt of the DNS was made by Orszag and Patterson
@1# 25 years ago for a homogeneous turbulence. For the wall
turbulence, the DNS of the fully developed turbulent channel flow
started more recently. It was, however, more than 10 years ago
when Kim et al.@2# ~KMM87, hereafter! published their DNS on
the turbulent channel flow. Their Reynolds number based on the
friction velocity ut and the channel half widthd was Ret5180.
Since then, the DNS of the turbulent channel flow has often been
performed because of its simple geometry and fundamental nature
to understand the transport mechanism. Kuroda et al.@3# and
Kasagi et al.@4# carried out the DNS for a slightly lower Reynolds
number of Ret5150. Kim et al.@5# ~KMM90, hereafter! also per-
formed a DNS with a higher Reynolds number of Ret5395. An-
tonia and Kim@6# analyzed the DNS data by KMM87@2# and
KMM90 @5# and obtained various turbulence quantities in the
near-wall region. They found that the Reynolds-number effect on
the turbulence quantities was rather significant. However, it is not
known yet whether this non-negligible dependence on the Rey-
nolds number could be extrapolated to a higher Reynolds number
or not. The authors group~Kawamura et al.@7#; Kawamura et al.
@8#! performed the DNS to include the scalar transport with vari-
ous Prandtl numbers for Ret5180 and 395. They carried out the
DNS also for a higher Reynolds number of Ret5640 and reported
preliminary results in Kawamura@9# and Kawamura et al.@10#.
Meanwhile the calculation was extended further; the present paper
reports the detailed results. Quite recently, Moser et al.@11# pub-

lished a brief communication on their DNS for a slightly lower
Reynolds number of Ret5590. Their results are also included in
this paper for comparison.

Extensive effort has been devoted to the experimental study of
the turbulent channel flow. Laufer@12# first obtained the detailed
turbulence statistics in the channel flow at three Reynolds num-
bers of Rec512,300, 30,800, and 61,600, where Rec is the Rey-
nolds number based on the centerline velocityuc and the channel
half width. Later, Hussain and Reynolds@13# reported the higher-
order turbulence quantities with the use of an extremely long
channel for Rec513,800233,300. Kreplin and Eckelmann@14#
made their experiments with the hot-film measurement for low
Reynolds numbers of Rec5280024100. Johansson and Alfreds-
son @15# carried out the experiment with the hot-film probes in a
water channel for Rec56900224,450, focusing on the Reynolds-
number effect. Wei and Willmarth@16# performed an experiment
with the laser-Doppler anemometer in a water channel for Rec
53000240,000 to investigate the existence of an inner scaling
law. Recently, Antonia et al.@17# made velocity measurement us-
ing the X-wire for Rec53300221,500 and also carried out the
DNS for Rec53300, and 7900. They examined the Reynolds num-
ber dependence concentrating mainly on the inner region. Al-
though a large amount of knowledge was accumulated through the
experiments, there existed always some discrepancies among the
existing experimental results, especially in the near-wall region.
More recently, Nishino and Kasagi@18,19# carried out the mea-
surement by the three-dimensional particle tracking velocimeter
method~PTV, hereafter! at a low Reynolds number of Ret5205
(Rec53755). They obtained a good agreement with the DNS of
KMM87 @2# including the near-wall region.

In the present work, the DNS of turbulent channel flow has
been carried out with the use of the finite difference method. The
Reynolds number is set to be Ret5180, 395, and 640. For Ret
5180 and 395, the obtained results are compared with those of
KMM87 @2# and KMM90@5# to show the reliability of the present
numerical method. On the other hand, Moin and Kim@20# carried
out a large eddy simulation for Ret5640 more than 10 years ago
to compare the results with the experiment of Hussain and Rey-
nolds @13#. The present computation is also executed for Ret
5640 based on that of Kawamura et al.@10#, which is, to the
authors’ knowledge, the highest Reynolds number ever simulated
through DNS for this configuration. Various turbulence statistics
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such as turbulence intensities, vorticity fluctuations, Reynolds
stresses, their budget terms, two-point correlation coefficients, and
energy spectra are examined to investigate the Reynolds-number
dependence in detail.

Computational Domain
The DNS must meet the following two requirements to ensure

the adequacy of the computation. One is that the computational
domain must be chosen to be large enough to contain the largest
eddies. The other is that the grid spacing must be fine enough to
resolve the smallest eddies. The former is confirmed if the two-
point correlation becomes zero within a half of the computational
domain. Recently, Jime´nez@21# pointed out that the product of the
wave number and the one-dimensional spectrum serves also as a
good measure of the computational domain. The latter can be
satisfied if the one-dimensional energy spectra shows enough
drop-offs for the high wave numbers. The present computation
takes into account the above requirements, although a rather
smaller volume is selected to save the computational storage. The
flow is assumed to be fully developed in an infinite two-
dimensional channel. The mean flow is inx direction and is driven
by a streamwise mean pressure gradient. Note thatx (x1), y (x2),
and z (x3) imply streamwise, wall-normal and spanwise direc-
tions, respectively. The periodic boundary condition is imposed in
x andz directions, while nonslip condition is adopted on the top
and bottom walls. The uniform meshes are used in thex and z
directions. On the other hand, the nonuniform meshes are adopted
in the y direction. The transformation is similar to that of Moin
and Kim @20# as

yj5
1

2a
tanh@j j tanh21 a#10.5, (1)

with

j j52112
j

N2
, (2)

where a is an adjustable parameter of the transformation~0
,a,1! andN2 is the grid number of they direction. In the case of
Ret5180 and 395, a constant value ofa50.967 and 0.980 are
adopted, respectively. On the other hand, in the case of Ret
5640, a function is employed for the parametera

a~j j !50.988520.5j j
210.405j j

3. (3)

The computational condition is shown in Table 1. Note that the
superscript1 indicates the quantities normalized by the wall vari-
ables, e.g.,y15yut /n and t15tut

2/n. For the highest Reynolds
number of Ret5640, the computation has been executed on
33, 554, 432~51232563256! grid points to resolve the smallest
eddies.

Numerical Procedures
The coordinates and flow variables are normalized by the chan-

nel half widthd, the kinematic viscosityn, and the friction veloc-
ity ut5(tw /r)1/2, where tw is the statistically averaged wall
shear stress andr is the density.

The fundamental equations are the continuity equation:

]ui
1

]xi*
50, (4)

and the Navier-Stokes equation:

]ui
1

]t*
1uj

1
]ui

1

]xj*
52

]p1

]xi*
1

1

Ret

]2ui
1

]xj*
2 1

] p̄1

]x1*
d i l . (5)

Here, i 51, 2, and 3 indicate the streamwise, wall-normal, and
spanwise directions, respectively. The variablest and p are the
time and the pressure. The superscript* indicates that the vari-
ables are normalized byd. Note that the third term for the right-
hand side of Eq.~5! is the streamwise mean pressure gradient.

The boundary conditions are

ui
150, at y50 and 2d. (6)

In the present computation, fractional step method proposed by
Dukowics and Dvinsky@22# is adopted for the computational al-
gorithm. Time advancement is executed by the semi-implicit
scheme: Crank-Nicolson method for the viscous terms~wall-
normal direction! and Adams-Bashforth method for the other
terms.

For spatial discretization, the finite difference method~FDM,
hereafter! is adopted. In the preceding DNSs, the pseudo-spectral
method ~PSM, hereafter! has been often preferred because a
higher-numerical accuracy can be obtained for a given grid size
through PSM than through FDM. On the other hand, the FDM has
a potential to be applied to more complex geometries and spatially
developing flow in future works; thus it is considered to be worth-
while to verify an applicability of the FDM to DNS in comparison
with existing PSM results. Several DNSs have been performed
with the use of FDM by Rai and Moin@23,24# for turbulent chan-
nel and boundary layer and by Gavrilakis@25# for square duct.

In the early stage of the present work, a series of computations,
were made in which DNSs of the fully developed turbulent chan-
nel flow were performed with various discretization methods in-
cluding the upwind and the second- and fourth-order central
schemes~Kawamura@26#; Suzuki and Kawamura@27#!.

As for the transport equation for the turbulent kinetic energy
and the Reynolds stresses, the use of the upwind scheme showed
an underestimation of the dissipation rate due to the numerical
viscosity in the transportation of the turbulent kinetic energy and
the Reynolds stresses. Even in the computation with the use of the
central scheme, the sum of the all terms in those transport equa-
tions never tended to fall to zero. It was noticed that this was due
to the inconsistency between the numerical and analytical differ-
ential operations employed in solution of the momentum and
transport equations.

The obtained conclusions can be summarized as follows. The
transport equation of the Reynolds stresses is derived from the
momentum equation through a lot of differential operations using
the continuity condition. In the calculation of DNS, the momen-
tum equation must be solved with a sufficient accuracy corre-
sponding to the order of applied discretization. Thus, if ever a
significant residual remains in the sum of the terms in the Rey-
nolds stress transport equations, it is because the numerical differ-
entiation scheme is not consistent with the analytical one. The
inconsistency was pointed out first by Schumann@28# more than

Table 1 Spatial resolution

Ret 180 395 640

Computational volume (x,y,z) 12.8d32d36.4d 6.4d32d33.2d 6.4d32d32d
Computational volume (x1,y1,z1) 2304336031152 2528379031264 40963128031280
Grid number 25631283256 25631923256 51232563256
Spatial resolution (Dx1,Dz1) 9.00, 4.50 9.88, 4.94 8.00, 5.00
Spatial resolution (Dy1) 0.20;5.90 0.20;9.64 0.15;8.02
Time integration (t1) 4,320 15,800 24,800
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twenty years ago. The authors group~Kawamura@26#; Suzuki and
Kawamura@27#! extended this idea to apply to DNS. The resultant
scheme was called the ‘‘consistent scheme’’ because of its con-
sistency between the numerical and analytical difference opera-
tions. It was originally with the second-order accuracy. Some
more details are given in the Appendix. Later, Kajishima@29# and
Morinishi @30# extended it into the fourth-order one. The present
computation has been executed with the second-order scheme;
while the fourth-order scheme is also tested and compared in the
Appendix. As for the computational stencil, the staggered grid is
adopted; that is, the pressure is located at the cell center and the
velocities at the cell surfaces.

The Poisson equation of pressure is solved using the tridiagonal
matrix algorithm in the wall-normal direction and the fast Fourier
transform ~FFT! in the streamwise and the spanwise directions
with the use of the second-order scheme. For the viscous terms,
the second-order central scheme is used.

The computer employed is NWT~Numerical Wind Tunnel! lo-
cated at the National Aerospace Laboratory. It is a vectorized
parallel computer with 166 processor elements, connected through
the cross bar network of 421 MB/s. The computation speed of
each processor is 1.7 GFLOPS, thus the theoretical maximum
performance of the whole system is 280 GFLOPS. In case of the
highest Reynolds number of Ret5640, the computation has been
made using of 64 processors with the typical integration time of
about 1.4 s for a time step. The calculation has been executed up
to 24,800n/ut

2 in order to obtain a stable statistical average.

Results and Discussion

Mean Flow Variables. Mean flow variables such as the bulk
mean velocityum , the mean centerline velocityuc , the Reynolds
numbers Rem , Rec , and Reu and the friction coefficientCf are
given in Table 2 for the three Reynolds numbers. Here, Rem is the
Reynolds number based on the bulk mean velocity and the chan-
nel width and Rec is the one based on the mean centerline velocity
and the channel half width. Note that Reu is based on the mean
centerline velocity and the momentum thickness. In the present
case, the momentum thicknessu is defined as

u

d
5E

0

1 ū1

ūc
1 S 12

ū1

ūc
1D dy* . (7)

In the case of Ret5640, Reu is about 10 percent lower than that of
the DNS with Reu51410 by Spalart@31# for the turbulent bound-
ary layer; while,uc for Ret5640 is roughly equivalent tou` for
Reu51410 by Spalart@31#, whereu` is the edge velocity. The
present results also agree with the correlation between the bulk
mean velocity and the mean centerline velocity proposed by Dean
@32#:

uc /um51.28 Rem
20.0116. (8)

The friction coefficient is defined as

Cf5tw /S 1

2
rum

2 D , (9)

where tw is the wall shear stress. Figure 1 shows the friction
coefficient in comparison with those of DNS by Kuroda et al.@3#
and KMM87 @2#. There included are the empirical correlation
proposed by Dean@32# for the channel flow and the one by Bla-
sius for the pipe flow. The present results are in good agreement

with them. However, there exists a small but discernible differ-
ence between the present and the KMM87@2# and KMM90 @5#
results. This is a reflection of the slight difference in the mean
velocity distribution in the channel center region.

The mean velocity distribution is given in Fig. 2 and compared
with the experiment of Hussain and Reynolds@13#. The DNS of
turbulent channel flow by KMM87@2# and KMM90 @5# and the
one of the turbulent boundary layer by Spalart@31# are also in-
cluded for comparison. The present result for Ret5640 is in good
agreement with the experiment by Hussain and Reynolds@13#;
while a slight deviation from Reu51410 by Spalart@31# is found
in the logarithmic region. This is due to a characteristic difference
between the channel and the boundary layer flows.

KMM87 @2# pointed out that the logarithmic region exists even
in the case of the lowest Reynolds number of 180; while it extends
up to a largery1 with the increase of Ret . Moreover, the wake
region is more clearly distinguished from the logarithmic one in
the case of the higher Ret s.

It is well-recognized that the logarithmic region can be ex-
pressed as

ū15
1

k
ln y11c, (10)

wherek is the von Karman constant andc is the additive constant.
Note that an overline denotes an average overx, z, and t. In the
turbulent boundary layer, Spalart@31# indicated that the result for
the higher Reynolds number of Reu51410 gavek50.41 andc
55.0. In the case of Ret5180, the additive constantc is 5.5,
which is in good agreement with that of KMM87@2#; while in the
case of Ret5640, the one by the present DNS decreases down to
5.2.

The von Karman constantk can be obtained from Eq.~10! as

Fig. 1 Friction coefficient

Fig. 2 Mean velocity distribution

Table 2 Mean flow variables

Ret um uc uc /um Rem Rec Reu Cf

180 15.72 18.38 1.17 5662 3309 2958.113 1023

395 17.70 20.48 1.16 13981 8090 7546.393 1023

640 19.00 21.85 1.15 24326 13984 12835.503 1023
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k5S y1
dū1

dy1 D 21

(11)

and is plotted in Fig. 3. It is well-known thatk obtained from the
experiments ranges from 0.40–0.42. The present calculation indi-
cates thatk is not completely constant but it stays at a roughly
constant value of 0.40 aroundy15502100. Moreover, the region
of the approximate constant tends to expand with the increase of
the Reynolds number.

Turbulence Intensities. The root mean square of velocity
fluctuations is shown in Fig. 4. Those of Moser et al.@11# andurms81

of Hussain and Reynolds@13# are also plotted for comparison. All
components increase with the increase of Ret . Antonia et al.@17#
indicated that the Reynolds number dependence forwrms81 is sig-
nificant compared to that forurms81 andv rms81 . In the present results,
not only wrms81 but alsov rms81 is enhanced with increasing Reynolds
number. Especially, the wall-normal and spanwise components
are enhanced. This is because the energy redistribution increases
remarkably forv rms81 and wrms81 with the increase of the Reynolds
number, as will be discussed later. In Fig. 4, the present result
shows good agreement with the measurement by Hussain and
Reynolds@13# for urms81 except for the peak value. This discrepancy
may also be caused by the difficulty in the measurement close to
the wall. The slight difference between the present (Ret5640)
and Moser et al.@11# (Ret5590) is due to the difference in Ret .
If they are plotted versusy/d instead ofy1, the agreement is
improved for the central region. In addition, the present results for
Ret5180 and 395 agree with those of Moser et al.@11#.

The root mean square of vorticity fluctuations normalized by
the wall variables, i.e.,v i8n/ut

2 are shown in Fig. 5. The near-wall
values of streamwise and spanwise vorticity fluctuationsvx8

1 and
vz8

1 increase with the increase of the Reynolds number. Espe-
cially, vz8

1 shows a larger value for a higher Reynolds number.
This is caused by the simple shear close to the wall. The wall
values ofvx8

1 andvz8
1 correspond to the coefficientsb3 andb1 ,

respectively, given in Table 3. The wall-normal vorticity fluctua-
tion vy8

1 , however, tends to become independent of the Reynolds
number in the near-wall region as reported by Antonia and
Kim @6#.

Reynolds Shear Stress. The Reynolds shear stress2u81v81

and the total shear stresst total are shown in Fig. 6. As the Rey-
nolds number increases, the peak value of the Reynolds shear
stress2u81v81 increases and its position moves away from the
wall. When Ret is 180, the peak of2u81v81 reaches 0.71 at
y1530; while, in the case of Ret5640, it becomes 0.87 aty1

542. On the other hand, the position of the peak moves closer to
the wall with the increase of the Reynolds number if scaled by the
channel half widthd.

The total shear stress is an identification that the calculation
reaches a statistically steady state. When the streamwise momen-
tum equation is ensemble averaged, the total shear stress can be
obtained as

t total512
y1

Ret
52u81v811

]ū1

]y1 . (12)

Once the statistically steady state is reached, the right and left-

Fig. 3 Von Karman constant

Fig. 4 Rms of velocity fluctuations

Fig. 5 Rms of vorticity fluctuations
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hand sides of Eq.~12! must be balanced. In the present DNS, the
statistically steady state can be confirmed for all the three Rey-
nolds numbers, as seen in Fig. 6.

Near-Wall Behavior. In the wall vicinity, the velocity fluc-
tuations can be expanded in terms ofy1 as

u815b1y11c1y121•••, (13)

v815 c2y121•••, (14)

w815b3y11c3y131•••. (15)

Considering the expansion of Eqs.~13! and ~14!, the Reynolds
shear stress can be expanded in terms ofy1 as

2u81v8152b1c2y131•••. (16)

The wall-values ofb1 , c2 , b3 , andb1c2 are extrapolated up to
the wall and given in Table 3 in comparison with Antonia and
Kim @6#. The present results agree well with those of Antonia and
Kim @6# in the near-wall region. A discrepancy can be observed
for b1c2. This seems to be caused by the location of the first grid
point and the staggered arrangement of the variables in this work.
In addition, the present results indicate that the coefficients ofb1 ,
c2 , b3 , andb1c2 increase with the increase of the Reynolds num-
ber. This is because the production rate of the turbulent kinetic
energy increases with the increasing Reynolds number as dis-
cussed later. Especially, the increase is significant when the Rey-
nolds number goes up from Ret5180– 395. In the case of Ret
5640, however, the increase is rather saturated. This indicates
that the low Reynolds-number effect is significant for Ret5180.

As for the wall-limiting value ofb1 or vz8 , a great deal of effort
have been devoted to reaching a consensus through the DNS and
experiment. However, there exists long discussion on the quantity
because of the experimental difficulties associated with the mea-
surements. Recently, Alfredsson and Johansson@33# carried out
the measurements in the air, oil, and water with the hot-film
probes and specially designed sensors. They indicated that the rms
of the velocity shear stress fluctuation in the streamwise direction
is 40 percent of the mean-shear stress for both the channel and the

boundary layer flows. This corresponds tob150.40 in the present
definition. Komminaho et al.@34# computed the plane turbulent
Couette flow at a Reynolds number of 750 based on half the
velocity difference between the walls and half the channel width.
They indicated a value ofb150.41 at the wall. This is in good
accordance with the present value ofb150.409 for Ret5640. In
the case of the Couette flow, the total shear stress is constant
independent upon the Reynolds number. This is equivalent to the
Poiseuille flow with an infinite Ret ~see Eq.~12!!. These indicate
that the decrease inb1 with decreasing Ret found in Table 3 is due
to the reduction of the total shear stress for the smaller Ret in the
wall vicinity.

Two-Point Correlations. Streamwise and spanwise two-
point correlations of velocity fluctuationsR( i i ) for Ret5640 are
shown in Fig. 7. No summation rule is applied to the parenthe-
sized indices. In the near-wall region, all of the three components
tend to fall off to almost zero within a half width of the compu-
tational domain for both the streamwise and spanwise directions.
Moving away from the wall, however, the spanwise two-point
correlationR11 gives a small but noticeable deviation from zero
even at the half of the spanwise computational domain. This
means that there exist the large scale structures in the center of the
channel and that the present computational domain is not enough
large to capture some of the largest scale ones. Recently, Jime´nez
@21# investigated the large scale structures in the center of the
channel and indicated that even the computational domain
adopted by Moser et al.@11# is too short to contain the large scale
ones. The large scale structures were also found by Komminaho
et al. @34# in the Couette flow. They observed streamwise struc-
tures of the order of 40d in the center of the channel. The above
large structures will be investigated with the use of the energy
spectra and be discussed later.

The spanwise two-point correlationR11 is given in Fig. 8 and
compared with the experiment by Nishino and Kasagi@19#. It is
interesting to note that the near-wall negative peak of the span-
wiseR11 becomes less prominent with the increase of Ret . This is
in accordance with the observation that the streamwise streaks are
clustered in higher Reynolds number as discussed later.

Energy Spectra. One-dimensional energy spectra of velocity
fluctuationsE( i i ) in the near-wall region for Ret5640 compared
with that for Ret5180 are shown in Fig. 9, wherekx andkz are
the wave numbers in the streamwise and spanwise directions, re-
spectively. Note thatE( i i ) is normalized by the wall units. The
energy spectra show acceptable drop-offs in the streamwise and
spanwise directions irrespective of the Reynolds number, although
a slight pile-up is seen for the highest wave numbers in the span-
wise direction. A large difference among three components is ob-
served in the lower wave number region for both the streamwise
and spanwise directions. Especially, the difference is significant
for the spanwise energy spectra. This indicates that the turbulence
structure for the near-wall region becomes more anisotropic in
space than the one for the channel center. Moreover,Evv andEww
exhibit noticeable increase in the lower wave number with in-
creasing Reynolds number for both the streamwise and spanwise
directions, which is in good accordance with the increase inv rms81

andwrms81 .
To investigate whether or not the smallest eddies are resolved,

Fig. 10 showskx
2Euu(«

3/n)21/4 referring to Saddoughi and Veer-
avalli @35#, which represents the energy spectra of the turbulence
dissipation rate. In the present result, its peak value occurs at
kx /kd50.120.2 and falls off forkx /kd.0.5 roughly irrespective
of the Reynolds number. This corresponds to the well-known fact
that the small scale eddies dissipate the energy at a lower wave
number than the Kolmogorov scale~Tennekes and Lumley@36#!.
Although, overkx /kd50.2, some difference is found between the
present result and that by PSM~Moser et al.@11#!, those higher

Fig. 6 Reynolds shear stress and total shear stress
distributions

Table 3 Near-wall expansion coefficient

Ret b1 c2 b3 b1c2

180 ~Present! 0.361 9.43 1023 0.199 7.93 1024

180 ~Antonia and Kim@6#! 0.356 8.53 1023 0.190 7.03 1024

395 ~Present! 0.395 1.13 1022 0.247 1.03 1023

395 ~Antonia and Kim@6#! 0.395 1.13 1022 0.245 9.53 1024

640 ~Present! 0.409 1.23 1022 0.261 1.13 1023

386 Õ Vol. 123, JUNE 2001 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.149. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



wave numbers are less effective for the turbulence statistics. This
means that the present spatial resolution is sufficiently small to
resolve the energy dissipative eddies.

To show the validity of the adopted computational domain,
Figs. 11~a! and 11~b! show the premultiplied energy spectra
kxEuu /u8u8 and kzEuu /u8u8, respectively, referring to Jime´nez
@21#. In the near-wall region, the peak ofkzEuu /u8u8 occurs at
lz

1.100 independent of the Reynolds number, which agrees with
the well-known average spacing of the streamwise streak struc-
tures. On the other hand, that ofkxEuu /u8u8 arises atlz

1

.1000. These correspond to the formation of the streaks as
shown later~see Figs. 16 and 17!.

In the center of the channel, however, the peak ofkzEuu /u8u8
moves toward a largerlz

1 ; i.e., lz
1.1000 as indicated by Jime´-

nez @21#. On the other hand, that ofkxEuu /u8u8 stays atlx
1

.1000. This means that the spanwise structure is enlarged with
the increase ofy1. In the present computation for Ret5640, the
peak of kzEuu /u81u81 cannot be obtained at the center of the
channel. This indicates that the largest scale has not been captured
totally at the central region of the channel for Ret5640. The
present authors are now performing another computation with an
extended domain for streamwise and spanwise directions. The
preliminary results indicate that its effect on the fundamental tur-
bulent statistics is sufficiently small.

Budget of Reynolds Stressui8uj8 and Turbulent Kinetic
Energy k. Budget terms of Reynolds stressui8uj8 normalized by
n/ut

4 are expressed as follows:

Production: Pi j 52S uj8
1uk8

1
]ūi

1

]xk
1 1ui8

1uk8
1

]ū j
1

]xk
1 D ,

(17)

Turbulent diffusion: Ti j 52
]

]xk
1 ~ui8

1uj8
1uk8

1!, (18)

Vel. p. -grad. corr.: P i j 52S uj8
1

]p81

]xi
1 1ui8

1
]p81

]xj
1 D ,

(19)

Molecular diffusion: Di j 5
]2

]xk
12 ~ui8

1uj8
1!, (20)

Dissipation: « i j 52S ]ui8
1

]xk
1 D S ]uj8

1

]xk
1 D . (21)

Figure 12 shows the budget terms of the Reynolds stresses for
Ret5640 compared with those of Ret5180 and 395. Foru81u81

component, as the Reynolds number becomes higher, the peak
value of the production and the wall values of the molecular dif-
fusion and dissipation increase. The production almost balances
with the some of the dissipation and the velocity pressure-gradient
correlation~v.p.g, hereafter! terms. On the other hand, forv81v81

and w81w81 components, the v.p.g and dissipation terms are
dominant and increase significantly with the increase of the Rey-
nolds number. These indicate that the Reynolds-number effect on
v81v81 andw81w81 components is more enhanced than that of
u81u81.

Budget terms of turbulent kinetic energyk(5(u81u81

1v81v811w81w81)/2) normalized byn/ut
4 are given in Fig. 13

for the three Reynolds numbers calculated. Note that the v.p.g

Fig. 7 Two-point correlation coefficients of velocity fluctua-
tions for Re tÄ640: „a…, „b… streamwise, „c…, „d… spanwise corre-
lation coefficients

Fig. 8 Spanwise two-point correlation coefficient R11 at y¿

Ä11
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term is reduced to the pressure diffusion one due to the continuity
condition. Figure 13 indicates that all terms gradually increase
with the increase of Ret . Especially, the wall values of the dissi-
pation and molecular diffusion increase appreciably with the in-
creasing Reynolds number. The peak value of the production term
Pk,max becomes 0.25 as the Reynolds number goes to the infinity.
In the present results,Pk,max is 0.218 for Ret5180; while, it
reaches 0.239 for Ret5640. The increase inPk,max from Ret
5180 to 640 is small but significant. This point will be discussed
later together with the pressure strain term.

The v.p.g term can be split into the pressure strain and the
pressure diffusion terms as follows:

(22)

It is well-known that the pressure strain term plays a dominant
role on the energy redistribution. Figure 12 indicates that all the
components for the pressure strain term exhibit a prominent in-
crease with increasing Reynolds number. It is interesting to note
that the increase in the pressure strain ofu81u81 from Ret

Fig. 9 One-dimensional energy spectra of velocity fluctuations for Re tÄ640 in comparison
with Re tÄ180: „a… streamwise, „b… spanwise

Fig. 10 Streamwise one-dimensional energy dissipation spec-
tra normalized by Kolmogorov scale

Fig. 11 Premultiplied energy spectra for Re tÄ640 „a…
k zEuu Õu 8u 8, „b… k xEuu Õu 8u 8
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5180– 640 is about 0.02 around its peak. This value is roughly
equal to the increase in the peak ofPk . SincePk is a half of the
P11, it means that about half of the increase in the production rate
of u81u81 is consumed byu81u81 itself and the rest half is
transferred to the other components. This is the reason whyv rms81

andv rms81 increase significantly with the increase of the Reynolds
number.

Dissipation Rate of the Reynolds Stresses.The dissipation
rate of the Reynolds stresses is the quantity obtained best from
DNS. The anisotropy of the dissipation rate for the normal Rey-
nolds stress components is of a great concern in the modeling of
turbulence. Mansour et al.@37# examined the DNS data of
KMM87 @2# for Ret5180 and found that the following expression
is a good approximation except for the off-diagonal components:

«~ i i !5
u~ i !81u~ i !81

2k
2«. (23)

The present results are compared with the above approximation in
Fig. 14. The agreement is generally good for all the normal com-
ponents. If examined more precisely, however, the agreement is
less satisfactory in the central region ofi 51 and 2 and also in the
near-wall region ofi 52. In the near-wall region, referring to
Launder and Reynolds@38#, the relation of Eq.~23! is exactly
valid for i 51 and 3; while, fori 52, the wall asymptotic value of
«22 becomes

«2254c2
2y12, (24)

wherec2 is the expansion coefficient in Eq.~14!. The above rela-
tion is shown in Fig. 14 with a dashed straight line; the agreement
is good in the close vicinity of the wall. The above Eq.~24! is
equivalent to

«2254
v81v81

2k
2«, (25)

instead of Eq.~23!. This is one reason why the agreement of Eq.
~23! is not so good fori 52 as seen in Fig. 14.

To examine the above approximation further, the anisotropy
tensors are defined for the Reynolds stress and its dissipation rate
as follows:

Fig. 12 Budget of Reynolds normal stresses: „a… u 8¿u 8¿, „b…
v 8¿v 8¿, „c… w 8¿w 8¿, , RetÄ640; – – –, RetÄ395; - - -, Ret

Ä180

Fig. 13 Budget of turbulent kinetic energy: ——, Re tÄ640;
, RetÄ395; - - -, RetÄ180

Fig. 14 Dissipation rate of the normal Reynolds stresses for
RetÄ640 symbol, «

„ i i … by Eq. „23…; , u
„ i …8¿u

„ i …8¿„«Õk …;
" " " , „2Õ3…«; , 4c 2

2y¿2
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bi j 5
ui8

1uj8
1

2k
2

d i j

3
, (26)

di j 5
« i j

2«
2

d i j

3
. (27)

Antonia et al.@39# compared the relation betweenbi j anddi j for a
turbulent boundary layer. The same kind of comparison is made
here for the turbulent channel flow in Fig. 15. For the above
approximation of Eq.~23! to be exactly valid, the equalitydi j
5bi j must hold. The arrows in Fig. 15 indicate the direction from
the wall to the channel center. The starting point~wall value! lies
on the line ofdi j 5bi j ; especiallybi j 5di j 521/3 for i 5 j 52.
The relation ofdi j 5bi j holds roughly for the whole region. It is,
however, interesting to note thatdi j becomes parallel to the hori-
zontal axis where the absolute value ofbi j is small. This means
that the dissipation becomes nearly isotropic irrespective of the
Reynolds stress anisotropy in the central region. This supports the
well-known belief that the dissipation must be almost isotropic
because it takes place in the microscale, which is more isotropic
than the large scale eddies. The isotropic expression

«~ i i !5
2

3
« (28)

is plotted with the dot-dashed line in Fig. 14. This is indeed in a
better agreement than Eq.~23! in the central region.

Instantaneous Flow Field. A lot of knowledge has been ac-
cumulated for the turbulent structures through the experimental
observation and the analysis of the DNS data. In the present study,
we focus mainly on the Reynolds number dependence for the
quasi-coherent structures such as vortices and streaks. Figures 16
and 17 show the high- and low-speed streaks and the second in-
variant of the deformation tensor (II 85]ui8/]xj•]uj8/]xi) for
Ret5180 and 640. The visualized domain is set in wall units to be
115231803576 for Ret5180 and 204836403640 for Ret5640
in x, y andz directions, respectively. Note that fluid flows from the
bottom left to the top right.

Chong et al.@40# proposed the identification of the vortex re-
gion which exhibits the circular or spiral motion with using the
second invariant of the deformation tensor. The low pressure re-
gion (p81) does not necessarily correspond to the vortex core as
indicated by Kim@41# and Robinson@42#. Thus, the second in-
variant of the deformation tensor is adopted to detect the vortex
structure in the present research. When the Reynolds number is
low as Ret5180, the well-known vortex structures such as single
quasi-streamwise vortices are dominant. On the other hand, as the
Reynolds number increases up to Ret5640, many different vorti-
cal structures such as the vortical arches are found besides the
single streamwise vortices. The vortical arches are rolled up over

the low-speed streaks. Other vortices including the single stream-
wise vortices are also associated closely with the low-speed
streaks.

As for the streaks, high- and low-speed streaks are obtained for
both Ret’s. The low-speed streaks are more elongated than the
high-speed ones for both of the Reynolds numbers observed. The
spanwise two-point correlationR11 is generally used to estimate
the spacing of the streaks. It is known that the position of the
negative peak ofR11 provides an estimation of the mean separa-
tion between the high- and low-speed streaks; that is, the streak
spacing becomes twice of the distance to the negative peak.
KMM87 @2# obtained the minimum value ofR11 at z1.50 and

Fig. 15 Relation between anisotropy tensors b ij and d ij

Fig. 16 High- and low-speed streaks and the second invariant
of the deformation tensor for Re tÄ180 „u 8¿ËÀ3.0; light-gray,
u 8¿Ì3.0; dark-gray, II8¿ËÀ0.03; white …

Fig. 17 High- and low-speed streaks and the second invariant
of the deformation tensor for Re tÄ640 „u 8¿ËÀ3.0; light-gray,
u 8¿Ì3.0; dark-gray, II8¿ËÀ0.03; white …
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indicated that the streak spacing wasDz1.100, with which the
present DNS for Ret5180 gives a good agreement as shown in
Fig. 16. Comparison of Figs. 16 and 17 indicates that the separa-
tion of the high- and low-speed streaks is more prominent in the
lower Reynolds number and less in the higher one. That is, in case
of Ret5640, the shape of the streaks becomes more complicated
and the several streaks are clustered with each other. Moreover,
several low-speed streaks are often lifted up from the wall and
finally broken up~see Fig. 17!. This observation is in agreement
with the finding that the local minimum of theR11 becomes less
prominent with the increase of the Reynolds number as seen in
Fig. 8.

Conclusions
The direct numerical simulation of a fully developed turbulent

channel flow has been carried out. The Reynolds number is set to
be Ret5180, 395, and 640. The computation has been executed
with the use of the finite difference method. Various turbulence
statistics, such as turbulence intensities, vorticity fluctuations,
Reynolds stresses, their budget terms, two-point correlation coef-
ficients and energy spectra, were obtained to investigate the Rey-
nolds number dependence. The conclusions are derived as
follows:

1 With the increase of Ret , the increase in the wall-normal
(v rms81) and spanwise (wrms81) components is more enhanced than
that of the streamwise one (urms81). About half of the increase in the
production rate ofu81u81 is consumed byu81u81 and the rest
half is transferred to the other components.

2 The near-wall expansion coefficients increase significantly as
the Reynolds number goes up from Ret5180– 395, but become
rather saturated for Ret5640. The wall-limiting value ofb1 ob-
tained as 0.409 agrees with the experiment for the channel flow by
Alfredsson and Johansson@33# and the DNS for the Couette flow
by Komminaho et al.@34#.

3 The examination of the spanwise two-point correlation coef-
ficient R11 reveals that the negative peak ofR11 becomes less
prominent with the increase of the Reynolds number. This agrees
with the more complex streak shapes observed in the instanta-
neous velocity field for the higher Reynolds number.

4 The dissipation energy spectrakx
2Euu(«

3/n)21/4 in the center
of the channel exhibits a peak value atkx /kd50.120.2 and falls
off for kx /kd.0.5 irrespective of the Reynolds numbers calcu-
lated as indicated by the local isotropic theory~Tennekes and
Lumley @36#!.

5 The anisotropy of the dissipation rate for the Reynolds nor-
mal stresses is compared with closure models. The anisotropy is
pronounced in the wall vicinity; while the well-known isotropic
nature is confirmed in the central region for a higher Reynolds
number.

6 The second invariant of the deformation tensor represents the
vortices such as the single streamwise vortices and the vortical
arches for Ret5640. In addition, different vortical structures are
captured with the increase of the Reynolds number. As for the
streaks, rather simple and separated streaky structures are ob-
served for the lower Reynolds number of Ret5180; while, the
shape of the streaks becomes more complicated and several
streaks are clustered with each other for the higher Reynolds num-
ber of Ret5640.

The present database is open to public access. The detailed
information is given at http://muraibm.me.noda.sut.ac.jp/e-
pagel.html.
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Nomenclature

bi , ci , di 5 coefficient of series expansion
bi j 5 anisotropy tensor of Reynolds stress
Cf 5 friction coefficient

c 5 additive constant of the logarithmic law
di j 5 anisotropy tensor of dissipation rate
Ei j 5 one-dimensional energy spectra of velocity fluc-

tuations
k 5 turbulent kinetic energy

kx , kz 5 wave number for streamwise and spanwise di-
rection

kd 5 Kolmogorov wave number
p 5 pressure

Pk 5 production rate for the turbulent kinetic energy
Rii 5 two-point correlation coefficient of velocity

fluctuations
Ret 5 Reynolds number5utd/n
Rem 5 Reynolds number5um2d/n
Rec 5 Reynolds number5ucd/n
Reu 5 Reynolds number5ucu/n

t 5 time
ui , u, v, w 5 velocity component

ut 5 friction velocity5Atw /r
uc 5 mean centerline velocity
um 5 bulk mean velocity
u` 5 edge velocity of the turbulent boundary layer

x1 , x 5 streamwise direction
x2 , y 5 wall-normal direction
x3 , z 5 spanwise direction

Greek

d 5 channel half width
d i j 5 Kroneker symbol

« 5 dissipation rate of turbulent kinetic energy
« i i 5 dissipation rate of Reynolds stress
k 5 von Karman constant
u 5 momentum thickness
n 5 kinematic viscosity

v i 5 vorticity component
r 5 density

lx , lz 5 wavelength for streamwise and spanwise direc-
tion

tw 5 statistically averaged wall shear stress
t total 5 statistically averaged total shear stress

Superscripts and Subscripts

~ !* 5 normalized byd
( )1 5 normalized byut , n andr
( )8 5 fluctuationcomponent
(¯) 5 statistically averaged overx, z, andt

( )rms 5 root mean square
( )max 5 maximum value

Appendix

A. Consistent Scheme. The convection terms forui can be
expressed in either advective (adv.[uj]ui /]xj ) or divergence
(div.[]/]xjuiuj) forms. Since

]

]xj
uiuj5uj

]ui

]xj
1ui

]uj

]xj
, (29)

the advective and divergence forms are analytically equal if the
continuity condition is satisfied. Thus, this equality must be satis-
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fied in the numerical discretized scheme, too. This is the consis-
tency between the analytical and numerical differential operations.

In the present computational stencil, the staggered grid is
adopted; that is, the pressure is located at the cell center and the
velocities at the cell surfaces.

The following difference operation is defined referring to
Morinishi @30#

df

dx1
5

f~x11h1/2, x2 , x3!2f~x12h1/2, x2 , x3!

h1
, (30)

wheref is a variable in thex1 direction. Interpolation operator is
given as

f̄
x15

1

2
~f~x11h1/2, x2 , x3!1f~x12h1/2, x2 , x3!!. (31)

Moreover, a special interpolation of the variables betweenf and
c in the x1 direction is expressed as

fc
x1

[
1

2
f~x11h1/2, x2 , x3!c~x12h1/2, x2 , x3!

1
1

2
c~x11h1/2, x2 , x3!f~x12h1/2, x2 , x3!. (32)

The present numerical discretization is based on the second
accuracy~Kawamura@26#; Suzuki and Kawamura@27#! and de-
fined as follows.

The discretized continuity equation can be expressed as

~Cont.![
dui

dxi
50. (33)

For the convective terms, the advective and divergence forms are
discretized as

~Adv.! i[uj
xi

dui

dxj

xj

, (34)

and

Fig. 18 Mean velocity distribution by fourth-order calculation
Fig. 19 Rms of velocity fluctuations by fourth-order
calculation

Fig. 20 One-dimensional energy spectra of velocity fluctuations by fourth-order calculation:
„a… streamwise, „b… spanwise
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~Div. ! i[
duj

xi
ui

xj

dxj
. (35)

One can easily confirm that these forms are connected with the
following relation:

~Adv.!a5~Div. !a2ua•~Cont.!
1xa

, (36)

where the summation convention is not applied to the suffixa.
Equation~36! corresponds to the analytical equality of Eq.~29!.
Therefore, the discretized scheme becomes independent of the
above forms within the numerical accuracy of the continuity equa-
tion ~Eq. ~33!!. In the present computation, the advective form is
adopted for the convective terms. Similar numerical operations
have also been devised to calculate the budget terms of the Rey-
nolds stress transport equations with retaining the consistency.

B. Fourth-Order Calculation. To examine the numerical ac-
curacy of the present calculation, the fourth-order scheme pro-
posed by Morinishi@30# is adopted in thex and z directions for
spatial discretization. The rest of the calculation method is the
same as the one adopted in the text. The Reynolds number is set to
be Ret5640.

The mean velocity distribution and the root mean square of the
velocity fluctuations are shown in Figs. 18 and 19, respectively.
The results by the fourth-order scheme are in agreement with
those by the second-order one in the whole region. The small
discrepancy, however, is observed in the channel center region for
the turbulence intensities, but it is not significant.

One-dimensional energy spectra of velocity fluctuationsE( i i )
are given in Fig. 20 in comparison with that of the second-order
scheme. In the streamwise energy spectra, no significant differ-
ence can be found between the second- and fourth-order schemes.
In the spanwise energy spectra, on the other hand, a noticeable
difference can be seen in the highest wave numbers. These wave
numbers are, however, already beyond the peak of the dissipation
spectra; thus the effect is not so significant so long as higher-order
correlations and derivatives are not concerned.

For the results, it can be concluded that the mean properties and
the second moment correlations can be captured even by the
second-order scheme with the present grid resolution. This con-
clusion, as a matter of course, depends upon the grid resolution. In
the case of DNS, however, an enough fine grid is adopted inevi-
tably to capture the finest scale of turbulence. This is the reason
why the acceptable results can be obtained even with the second-
order scheme.

References
@1# Orszag, S. A., and Patterson, G. S., 1972, ‘‘Numerical simulation of three-

dimensional homogeneous isotropic turbulence,’’ Phys. Rev. Lett.,28, pp.
76–79.

@2# Kim, J., Moin, P., and Moser, R., 1987, ‘‘Turbulence statistics in fully devel-
oped turbulent channel flow at low Reynolds number,’’ J. Fluid Mech.,177,
pp. 133–166.

@3# Kuroda, A., Kasagi, N., and Hirata, M., 1989, ‘‘A direct numerical simulation
of the fully developed turbulent channel flow at a very low Reynolds num-
ber,’’ Int. Symp. Computational Fluid Dynamics, Nagoya, pp. 1174–1179.

@4# Kasagi, N., Tomita, Y., and Kuroda, A., 1992, ‘‘Direct numerical simulation
of passive scalar field in a turbulent channel flow,’’ ASME J. Heat Transfer,
114, pp. 598–606.

@5# Kim, J., Moin, P., and Moser, R., 1990,The Diskette of Collaborative Testing
of Turbulence Models, Bradshaw, P., ed., Stanford University.

@6# Antonia, R. A., and Kim, J., 1994, ‘‘Low-Reynolds-number effects on near-
wall turbulence,’’ J. Fluid Mech.,276, pp. 61–80.

@7# Kawamura, H., Ohsaka, K., Abe, H., and Yamamoto, K., 1998, ‘‘DNS of
turbulent heat transfer in channel flow with low to medium-high Prandtl num-
ber fluid,’’ Int. J. Heat and Fluid Flow,19, pp. 482–491.

@8# Kawamura, H., Abe, H., and Matsuo, Y., 1999, ‘‘DNS of turbulent heat trans-
fer in channel flow with respect to Reynolds and Prandtl number effects,’’ Int.
J. Heat and Fluid Flow,20, pp. 196–207.

@9# Kawamura, H., 1998, ‘‘Direct numerical simulation of turbulence by parallel
computation,’’Proc. 10th Int. Conf. Parallel CFD, pp. 19–21.

@10# Kawamura, H., Abe, H., and Matsuo, Y., 1999, ‘‘Direct numerical simulation
of turbulence by parallel computation,’’Parallel Computational Fluid Dynam-
ics, Lin et al., eds., North-Holland, Amsterdam, pp. 3–9.

@11# Moser, R. D., Kim, J., and Mansour, N. N., 1999, ‘‘Direct numerical simula-
tion of turbulent channel flow up to Ret5590,’’ Phys. Fluids,11, pp. 943–945.

@12# Laufer, J., 1951, ‘‘Investigation of turbulent flow in a two-dimensional chan-
nel,’’ NACA Rept., Vol. 1053, pp. 1247–1266.

@13# Hussain, A. K. M. F, and Reynolds, W. C., 1975, ‘‘Measurements in fully
developed turbulent channel flow,’’ ASME J. Fluids Eng.,97, pp. 568–580.

@14# Kreplin, H. P., and Eckelmann, H., 1979, ‘‘Behavior of the three fluctuating
velocity components in the wall region of a turbulent channel flow,’’ Phys.
Fluids,22, pp. 1233–1239.

@15# Johansson, A. V., and Alfredsson, P. H., 1982, ‘‘On the structure of turbulent
channel flow,’’ J. Fluid Mech.,122, pp. 295–314.

@16# Wei, T., and Willmarth, W. W., 1989, ‘‘Reynolds-number effects on the struc-
ture of a turbulent channel flow,’’ J. Fluid Mech.,204, pp. 57–95.

@17# Antonia, R. A., Teitel, M., Kim, J., and Browne, L. W., 1992, ‘‘Low-
Reynolds-number effects in a fully developed turbulent channel flow,’’ J. Fluid
Mech.,236, pp. 579–605.

@18# Nishino, K., and Kasagi, N., 1989, ‘‘Turbulence statistics measurement in a
two-dimensional channel flow using a three-dimensional particle tracking ve-
locimeter,’’ Proc. 7th Turbulent Shear Flows, Vol. 2, pp. 22.1.1–22.1.6.

@19# Nishino, K., and Kasagi, N., 1991, ‘‘On the quasi-coherent turbulence struc-
tures in the two-dimensional channel flow,’’Proc. 8th Turbulent Shear Flows,
Vol. 2, pp. 28.3.1–28.3.6.

@20# Moin, P., and Kim, J., 1982, ‘‘Numerical investigation of turbulent channel
flow,’’ J. Fluid Mech.,118, pp. 341–377.
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