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Scaling of the velocity fluctuations in turbulent
channels up to Reτ = 2003

By Sergio Hoyas AND Javier Jiménez

School of Aeronautics, U. Politécnica, 28040 Madrid, SPAIN

1. Numerical experiment

A direct simulation of a plane turbulent channel has been performed in a computational
box with streamwise and spanwise periodicities Lx = 8πh and Lz = 3πh, at a Reynolds
number Reτ = 2003 based on the friction velocity uτ and on the channel half-width h. It is
therefore comparable with previous simulations at lower Reynolds numbers by our group
(Del Álamo & Jiménez 2003; Del Álamo et al. 2004). We integrate evolution equations for
the wall-normal vorticity ωy and for the Laplacian of the wall-normal velocity φ = ∇2v,
as in Kim, Moin & Moser (1987). The streamwise and spanwise coordinates are x and
z, and the corresponding velocity components are u and w. The spatial discretization
uses dealiased Fourier expansions in x and z, and seven-point compact finite differences
in y, with fourth-order consistency and extended spectral-like resolution (Lele 1992).
The temporal discretization is third-order semi-implicit Runge-Kutta (Spalart, Moser &
Rogers 1991). The details of the code and of the parallelization strategy, as well as a
fuller analysis of the results, will be the subject of future publications. Here we restrict
ourselves to the description of the low-order statistics and to the discussion of the scaling
of the velocity fluctuation intensities in the newly extended range of Reynolds numbers.

Table 1 summarizes the parameters of the present simulation, together with those of
the previous ones used for comparison. It uses Nx = 6144, Ny = 633, Nz = 4608 collo-
cation points. The simulation ran for about 6 × 106 processor-hours in 2048 processors
of the Marenostrum computer at the Barcelona supercomputing center and generated
approximately 25 TB of raw data. The wall-normal grid spacing is adjusted to keep the
resolution (∆y = 1.5η) approximately constant in terms of the local isotropic Kolmogorov
scale η = (ν3/ε)1/4. It is slightly better in that respect than those of the lower Reynolds
numbers. At the center of the channel the resolutions along the three coordinates are ap-
proximately equal (η−1.8η), comparable to those of well-resolved simulations of isotropic
turbulence (Jiménez et al. 1993). The microscale Reynolds number at that location is
Reλ ≈ 94. The running times are given in terms of turnover periods for eddies of size
h and of velocity uτ . For the present box they are roughly equivalent to flow-throughs.
The r.m.s. differences between one-point statistics over the first and second halves of the
run are of the order of 1%, and the asymmetry of the profiles is of the same order.

2. Results

The mean velocity profile is shown in Fig. 1(a) in terms of the inverse Kármán ‘con-
stant’ y∂yU

+, where U+ is the mean velocity in wall units. This parameter is nowhere
constant, but that is also the case for the high-Reynolds-number pipe data by McKeon
et al. (2004) included for comparison, and for other experimental data not included in
the figure. This is obviously the effect of the higher-order terms usually included in the
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Reτ ∆x+ ∆z+ ∆y+
max Lx/h Lz/h tuτ/h

5 (Del Álamo & Jiménez 2003) 550 8.9 4.5 6.7 8π 4π 12.0
4 (Del Álamo et al. 2004) 934 9.2 3.8 7.6 8π 3π 8.5
◦ , Present 2003 8.2 4.1 8.9 8π 3π 10.3

Table 1. Summary of cases. The resolution is measured in collocation points, and the symbols
are used in the figures.
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Figure 1. (a) Inverse Kármán constant. Symbols as in table 1. Dots with error bars are pipes
from McKeon et al. (2004), with Reτ > 2000. (b) Velocity fluctuation intensities, in wall units.

, u′; , v′; , w′.

‘wake’ component of the profile. However the minimum is reached in all the numerical
cases around y+ = 50, thereby calling into question the possibility, or even the relevance,
of estimating the extent of the logarithmic layer in this way. If we take the usual estimate
that y+ > 100 and y/h < 0.2, the present simulation has a logarithmic region extending
over a factor of 4. We will see below that there is a sizable part of the channel over which
some length scales are approximately proportional to the wall distance y.

The r.m.s. velocity fluctuation profiles are shown in Fig. 1(b). None of them collapses
exactly in wall units.

In the case of the transverse components, v′ and w′, the effect is weak. The three
cases collapse well near the wall except within the buffer layer, where viscous effects are
important. To our knowledge, the presence of a peak in the spanwise component had
not been described before, and it is unclear whether it would tend to a finite limit at
infinite Reynolds numbers. Away from the wall there is a weak tendency for v′ and w′ to
increase with increasing Reynolds number, most noticeably at the center of the channel.
Experimental data in pipes and channels (not shown) lend some support to that trend,
although the scatter is large and values tend to cluster by facility rather than by Reynolds
number.

The clearest effect is in the streamwise intensity u′, which neither collapses near the
wall nor far from it. The scaling failure near the wall was first reported in boundary
layers by De Graaff & Eaton (2000), but there is no general agreement on its causes,
and the authors of that article made the explanation a challenge for active theoreticians.
The available data are collected in Fig. 2. The intensity in the near-wall peak, which



Scaling of the velocity fluctuations in turbulent channels 353

10
2

10
3

10
41.6

2

2.4

2.8

3.2

Reτ

u’
+

Figure 2. Streamwise fluctuation intensities from various sources. Open symbols, near-wall
maximum; closed symbols, y/h = 0.15, y+ > 60. 2 , Couette flows; 4 , pipes and channels; *,
pipes from Morrison et al. (2004); +, boundary layers; ◦ , present numerical channels.

is always achieved around y+ = 15, increases steadily with the Reynolds number. The
numerical cases confirm this trend. Any failure of near-wall scaling must come from
the interaction of near-wall modes that scale in wall units with modes residing away
from the wall, for it is only in that way that the Reynolds number is defined. The
best-known proposal involves wall-parallel large-scale modes that reach the wall without
being constrained by impermeability (Townsend 1976). It was suggested by Del Álamo &
Jiménez (2003), on the basis of lower-Reynolds-number simulations, that the important
outer modes were global ones spanning the whole channel and scaling with the boundary
layer thickness. Hites (1997), among others, also described the near-wall spectrum in
terms of the interaction of ‘inner’ and ‘outer’ energy peaks. The discussion of whether
the data sustain such ‘two-scale’ models is the subject of most of the rest of this note.

The behavior of the intensities in the logarithmic layer is also included in Fig. 2, but it
is less clear. There is a general growing trend, also shared by the numerics, but it could
be argued that boundary layers saturate above Reτ ≈ 3000, and Morrison et al. (2004)
have concluded the same for pipes. That experiment is plotted separately for emphasis.
The subject has been discussed for example in Del Álamo et al. (2004). However, except
to present the additional data point in this figure, it will not be further discussed here.

Two-dimensional spectral energy densities at the height of the near-wall kinetic energy
maximum are shown in Fig. 3. Two isolines are given for each case, representing the
high-intensity core of the spectrum and its outer border. They confirm the results of
simulations at lower Reynolds numbers in Del Álamo & Jiménez (2003). The core isolines
scale well in wall units. Because the kinetic energy is the integral of the spectrum, this
part of the energy also scales in wall units. The scaling failure appears for u and w in
the upper right-hand corner, where a spectral ridge extends roughly along λz = 0.15λx.
The ridge gets longer as the Reynolds number increases, reaching up to λx ≈ 10h in the
case of φuu. The eddies in this ridge are inactive in the sense of Townsend (1976). They
are not found in the v spectrum, nor in the Reynolds stress co-spectra in figure 3(c).

The vertical structure of the eddies responsible for the inactive ridge is shown in
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Figure 3. Spectral energy densities φ = kxkzE(kx, kz) at y+ = 15, in terms of the wavelengths
λ = 2π/k. (a) φuu. (b) φww. (c) Cospectrum −φuv . , Reτ = 550; , 934; ,
2003. Spectra are normalized in wall units, and the two contours for each spectrum are 0.125
and 0.625 times the maximum of the spectrum for the highest Reynolds number. The heavy
straight line is λz = 0.15λx, and the heavy dots are λx = 10h for the three cases. The dotted
rectangle in (c) is an example of the filtering boxes used to isolate the energies in Fig. 4.

Fig. 4(a), which shows contours of u′2 integrated over logarithmic boxes of wavelengths
centered along the ridge, with a fixed ratio between their longest (widest) and short-
est (narrowest) wavelengths (see Fig. 3c for an example). The energy at the shortest
boxes is concentrated near the wall. They fall in the core part of the spectrum, and
they correspond to the classical buffer-layer streaks. It follows from Fig. 3(c) that these
structures are active and carry Reynolds shear stress. On the basis of lower Reynolds
number simulations, Jiménez, del Álamo & Flores (2004) hypothesized that the streaks
are intrinsically infinitely long, but that they are truncated by the action of outer layer
turbulence. This is now seen not to be the case. The ‘wall modes’ have a definite length
– of the order of 104 wall units – that is independent of the Reynolds number. The ridge
modes form a continuum that links those inner structures with the ones scaling in outer
units. Figure 4(a) also contains a line joining the position of the maxima of the individual
filtered energy profiles. The longer modes peak farther from the wall, and the locations
of their peaks grow linearly as ymax ≈ λx/40 = λz/6. Note that the locations of the
peaks are within the nominal logarithmic layer and that they agree for the two Reynolds
numbers for which a comparison is possible.

Even if the eddies along the spectral ridge are inactive near the wall, the same is not
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Figure 4. Contour plots of the spectral energy summed over logarithmic boxes of width 2,
centered along λz = 0.15λx, such as the one in Fig. 2, as a function of y and of λx at the
box center. Reτ = 2003. (a) Streamwise velocity fluctuations. Contours are 0.04(0.0.4)0.32. (b)
Shear stress co-spectrum. Contours are 0.01(0.01)0.06. In both case the solid lines with symbols
are the y positions of the maxima of the profiles in (a). Symbols as in table 1.

true at the levels where their intensities peak. That is seen in Fig. 4(b), which shows
isocontours of the box-filtered Reynolds stress −u′v′. The ridge modes become more
intense and more active as they grow larger, and they actually constitute the dominant
modes within the logarithmic layer. The highest contours in the outer part of both
Figs. 4(a) and 4(b) are comparable to the corresponding intensities in the buffer layer at
the core of the u spectrum.

If we interpret λz as a width and ymax as a vertical semiaxis, the cross sections of the
eddies would be oblate ellipses with aspect ratios of 3:1. Because of the linear growth
of both quantities, the eddies can be visualized as conical. In that interpretation, the
inclination of their axes would be arctan(1/40) ≈ 1.5◦, although it is clear from Fig. 4(a)
that the eddies are not symmetric and that any identification method based on integral
quantities would result in somewhat higher angles. The inclination of the upper branches
of the isocontours in both figures is approximately 10− 12◦, which is of the order of the
angles measured for the velocity correlation in experimental boundary layers (Krogstad
& Antonia 1994; Christensen & Adrian 2001).

3. Conclusions

In summary, we have presented a new simulation of a turbulent channel containing
an appreciable logarithmic layer, at a Reynolds number higher than those currently
available. Several features in the logarithmic layer have been shown to grow linearly with
wall distance, as in the classical scaling of the overlap region. The scaling failure of the
intensity at the near-wall kinetic energy peak has been shown to be the result of eddies
conforming to Townsend’s inactive model, restricted at that wall distance to a spectral
ridge of long and wide structures that is clearly distinguishable from the near-wall streaks.
The latter scale well in wall units. The ridge modes are the near-wall footprints of eddies
whose maximum intensities lie in the logarithmic region, and they link the near-wall
streaks with the global modes identified elsewhere. They are inactive at the wall, but
they support most of the Reynolds shear stresses at the location of their peaks.
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