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Linear analysis of the cylinder wake mean flow
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PACS. 47.20.Ft – Instability of shear flows (e.g., Kelvin-Helmholtz).
PACS. 47.20.Ky – Nonlinearity, bifurcation, and symmetry breaking.

Abstract. – A highly accurate 2D linear stability analysis is performed on the mean flow
of laminar vortex shedding from a circular cylinder for Reynolds numbers between 46 and
180. Consistent with past studies of mean profiles, the analysis shows that the eigenfrequency
of the mean flow tracks almost exactly the Strouhal number of vortex shedding. The linear
growth rate reveals that the wake mean flow is a marginally stable state over the whole range of
Reynolds numbers for stable 2D vortex shedding. This is contrasted with 2D stability analysis
about the unstable steady base flow. The relevance to nonlinear saturation and frequency
selection are discussed.

Introduction. – Fluid flow past a circular cylinder has long been a prototype for bluff-
body wake flows. The flow configuration is governed by a single non-dimensional parameter,
the Reynolds number Re = U∞d/ν, where ν is the kinematic viscosity of the fluid which is
moving with free-stream speed U∞ and d is the cylinder diameter. For values of Re below a
critical value Rec � 46, the flow is asymptotically steady and two-dimensional. (See fig. 1(a)
discussed in detail below.) At Re = Rec the steady flow becomes unstable through a Hopf
bifurcation leading to the oscillating Bénard-von Karman vortex street [1–5]. (See fig. 1(b).)
The flow is asymptotically time-periodic and two-dimensional for Re up to approximately 188,
where the flow becomes three-dimensional [6]. This oscillatory flow is one of the most famous
and well-studied flows in fluid mechanics.

A substantial body of work, both experimental and theoretical, has been devoted to under-
standing the vortex shedding frequency and spatial structure of the cylinder wake and other
wake flows, e.g. [3–21]. Over the years a theory of spatially developping flows has advanced to
the point of addressing fully nonlinear structures in wakes [17,18]. Of particular interest here
is recent work by Pier [18] in which, among other things, he finds that the time average of the
oscillating wake (the mean flow) provides the best profile from which to predict the shedding
frequency. There are many other studies, e.g. [7, 8, 16, 21], in which averaged wake profiles
have been used to determine shedding frequency. Another important way in which wake mean
flows have received attention is in the work of Wesfreid et al. [13,15] and Noack et al. [19,20]
on modification of the mean flow due to the oscillating wake and on the subsequent nonlinear
saturation via interaction with the mean flow. These ideas trace back to the early work of
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Fig. 1 – Flow visualisations illustrating the different types of states considered in this paper. Vorticity
ω = ∂v/∂x− ∂u/∂y is plotted in greyscale with ω ≤ −4 black and ω ≥ 4 white. For the steady cases
separating streamlines are plotted. Only a small portion of the full computational domain is shown.
(a) Re = 40, below the onset of vortex shedding. The flow is steady, stable and reflection symmetric
in y. In (b)-(d) Re = 100, well above the onset of vortex shedding. (b) A snapshot of the vortex
shedding state. (c) The steady, but unstable base flow. The flow is reflection-symmetric in y and
evolves continuously from (a) as a function of Re. (d) The mean flow over one shedding period.
(e) Approximation to the mean flow obtained from the single snapshot in (b).
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Stuart on nonlinear stability theory [22]. Noack et al. [19] present an appealing three-variable
model capturing many aspects of 2D cylinder wake dynamics. The model suggests that the
amplitude of the oscillating wake saturates precisely when the mean flow is marginally stable.
This is similar in certain respects to the marginal stability criterion of Malkus [23] for fully
developed turbulent flows.

Motivated by these studies of wake mean flows, we have undertaken a fully 2D linear
stability analysis of the mean flow for the cylinder wake. A highly accurate numerical approach
resolves the wake, and hence the mean flow, throughout a 2D domain and provides eigenvalues
and 2D eigenmodes. Significantly we determine not only the linear eigenfrequency, but also
the linear growth rates for general 2D (global) perturbations to the mean flow.

Simulations. – The flow is governed by the 2D incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p +

1
Re

∇2u, (1a)

∇ · u = 0, (1b)

where u(x, y, t) = (u(x, y, t), v(x, y, t)) is the velocity, p(x, y, t) is the static pressure, and the
density is one. These equations are nondimensionalised by the cylinder diameter d and the
speed U∞ of the free-stream flow, which is taken to be in the +x̂ direction.

Equations (1) are numerically solved on a large 2D computational domain using a highly-
accurate spectral-element discretisation with second-order differences in time. Details are
given in refs. [6,24]. The cylinder is centred at the origin. The lateral dimensions of the domain
are: −16 ≤ x ≤ 25 and |y| ≤ 22. No-slip conditions are imposed on the cylinder. Uniform
flow, (u, v) = (U∞ = 1, 0), is imposed upstream and on the lateral sides, and an outflow
boundary condition is imposed at the downstream end of the domain. This computational
domain captures very accurately the wake flow over the range of Re of interest here [6].

Figure 1(a) shows the flow at Re = 40, below the onset of vortex shedding. The flow is
steady and satisfies reflection symmetry about the centreline y = 0:

(u(x, y), v(x, y)) = (u(x,−y),−v(x,−y)) . (2)

Hence, as can be seen, the vorticity satisfies ω(x, y) = −ω(x,−y). This flow is stable and
starting from any initial condition, solutions u(x, y, t) to eqs. (1) converge to it as t → ∞.

For Re > Rec the instantaneous reflection symmetry spontaneously breaks and the flow
oscillates, shedding opposite sign vorticity downstream. Figure 1(b) shows a snapshot of the
classic vortex street at Re = 100. This time-periodic flow has the spatio-temporal symmetry

(u(x, y, t), v(x, y, t)) = (u(x,−y, t + T/2),−v(x,−y, t + T/2)) , (3)

where T is the shedding period. The vorticity obeys ω(x, y, t) = −ω(x,−y, t + T/2), so that
one half a shedding cycle later the vorticity field in fig. 1(b) would be flipped about y = 0
with greyscale contours interchanged (e.g. white with black).

The Strouhal number St —the nondimensional shedding frequency 1/T— is plotted in
fig. 2(a) as a function of Re. The curve is a fit to data taken at discrete values of Re. At the
numerical resolution of this study the curve is extremely accurate. As stated at the outset, a
substantial amount of research has been devoted to understanding the relationship between
St and Re seen in fig. 2(a).

Base flows. – We use ub to denote base flows. These are time-independent solutions to
eqs. (1). Below Rec, e.g. fig. 1(a), the base flow is the unique stable state. Above Rec, the



D. Barkley: Cylinder mean flow 753

Fig. 2 – (a) Frequencies and (b) growth rates as a function of Reynolds number. In (a) the bold curve
labelled St is the Strouhal number —the nondimensional vortex shedding frequency. All other results
in (a) and (b) are from linear stability computation. Thin curves are for the base flow ub. Triangles
are for the mean flow ū. Crosses are for the two-point approximation to mean flow uh with error bars
indicating the spread of values depending on the reference time t0. Vertical dashed lines indicate Rec.

base flow still exists, but is unstable. Figure 1(c) shows ub at Re = 100. The flow exhibits
a very long recirculation region behind the cylinder. While this base flow is unstable, it
can be obtained by direct numerical simulations by restricting to the subspace of symmetric
solutions for which eq. (2) holds. This restriction can be accomplished in practice by imposing
the constraint v(x, y = 0) = 0 in simulations of eqs. (1).

The linear stability of the base flow is determined from the evolution of infinitesimal
perturbations εũ to ub. Specifically, letting u(x, y, t) = ub(x, y)+εũ(x, y) exp[λt], substituting
this into eqs. (1) and keeping only lowest-order terms in ε gives the linear stability equations

λũ = −(ũ · ∇)ub − (ub · ∇)ũ −∇p̃ + 1
Re ∇2ũ, (4a)

∇ · ũ = 0, (4b)

where λ = σ + i2πf is a (temporal) eigenvalue. Equations (4) are numerically solved using
the same space-time discretisation as for the simulations of eqs. (1). An Arnoldi method is
used to find the leading eigenvalues λ (those with largest growth rate σ) and corresponding
2D eigenmodes ũ [6]. Eigenvalues with positive σ correspond to unstable ub.

The thin curve in fig. 2 shows leading eigenvalues of the base flow. The onset of oscillation
corresponds to a Hopf bifurcation in which the growth rate σ crosses zero at Rec (by definition)
with eigenfrequency f . The Strouhal number and eigenfrequency agree at the bifurcation, as
they must at a supercritical bifurcation. However, past the bifurcation the frequencies diverge
rapidly with Re. The eigenfrequency of ub increases only slightly and then falls for Re above
about 67. On the other hand, St increases rapidly following the bifurcation. This leads to
the fact that for the cylinder wake the eigenvalues of the base flow are not predictive for
the shedding frequency except very close to onset. It is in large part because the base flow
eigenvalues fail to predict St-Re relationship that this relationship is difficult to explain.

Mean flows. – While the linear analysis of the base flow fails to capture the frequency of
nonlinear vortex shedding, linear analysis of the mean flow provides an extremely good match,
as we now address. For any T -periodic flow, u(x, y, t + T ) = u(x, y, t), the mean flow can be
defined as ū(x, y) ≡ 〈u(x, y, t)〉T . It is helpful to consider the decomposition of the flow into
mean and fluctuating fields, u(x, y, t) = ū(x, y) + u′(x, y, t). Then ū obeys the time-averaged
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Navier-Stokes equations

0 = −(ū · ∇)ū −∇p̄ + 1
Re ∇2ū + F , (5a)

∇ · ū = 0, (5b)

where
F = F (x, y) ≡ −〈(u′(x, y, t) · ∇)u′(x, y, t)〉T

can be viewed as a forcing term due to Reynolds stresses generated by the fluctuating field.
From eqs. (5) we can understand the meaning of stability analysis of the mean flow.

Consider the forced Navier-Stokes equations

∂u

∂t
+ (u · ∇)u = −∇p +

1
Re

∇2u + F , (6a)

∇ · u = 0. (6b)

For a given Re take the forcing term F to be that given by the vortex shedding at that Re.
Clearly ū will be a steady solution to eqs. (6). Then as for stability of the base flows, we
can consider infinitesimal perturbations εũ(x, y) exp[λt] to mean-flow solutions of the forced
problem. Keeping only terms linear in ε gives the same linear equations as eqs. (4), but in
terms of the mean flow ū rather than the base flow ub. The forcing term F does not appear
since it is taken to be constant. Hence linear results must be properly interpreted as applying
in the case where the Reynolds stresses are themselves unperturbed at order ε.

Figure 2 shows the leading eigenvalues from the linear analysis of the mean flow. The
eigenfrequencies f agree almost exactly with St . Similar observations can been inferred from
past studies of wake profiles [7,8,16,18]. The analysis here is fully 2D and we also determine
the growth rate σ of the 2D eigenmode. The growth rates in fig. 2(b) are almost exactly
zero over the whole range of Re considered. This implies that the mean flow, when viewed as
a steady solution to the forced eqs. (6), is marginally stable. Both the eigenfrequency and
growth rate observations are consistent with the model of Noack et al. [19].

While the mean-flow eigenfrequency is an extremely good predictor of the (nonlinear)
Strouhal number, the mean flow is itself dictated by cumulative effects of vortex shedding over
the cycle. The spatio-temporal symmetry of shedding suggests a method for approximating
the mean flow from a single snapshot. Although this does not avoid the fundamental issue
of requiring the vortex shedding solution, it eliminates the need to average over a shedding
cycle and this could be important in experimental settings. Consider approximating the mean
with two fields separated by half the period: ū ≈ (u(t0) + u(t0 + T/2))/2, where t0 is some
arbitrary reference time. From symmetry (3), u(t0 + T/2) can be expressed in terms of u(t0)
and hence we obtain a two-point, or symmeterised, approximation to the mean flow

uh(x, y) ≡ 1
2

(u(x, y, t0) + u(x,−y, t0), v(x, y, t0) − v(x,−y, t0)) .

This approximation is quite good. For example, fig. 1(e) shows uh at Re = 100. In the
near-wake region the difference between uh and ū (fig. 1(d)) is small. The downstream part
of uh contains remnants of the vortex shedding and this part of approximation in particular
depends on t0. Figure 2 includes eigenvalues at three representative values of Re (60, 100,
and 140) using uh instead of ub in eqs. (4). The eigenfrequencies f again agree almost exactly
with St and they depend very weakly on the reference time t0. The real part of the eigenvalues
are centred about zero, though they show dependence on t0 at larger Re.
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Fig. 3 – Vorticity of the leading eigenmode for (a) the base flow and (b) the mean flow at Re = 100.

The leading eigenmodes at Re = 100 for the base flow and the mean flow are shown in
fig. 3. The modes are complex and are shown at one phase only. The streamwise spacing of
vorticity maxima for the mean-flow eigenmode is almost identical to that of the vortex street
in fig. 1(b). This is not the case for the base flow eigenmode.

Dynamics. – Figure 4 further illustrates the relationship between the mean flow, the
base flow, and periodic oscillations at Re = 100. The time series, fig. 4(a), shows the value of
v at a representative point (x, y) = (2, 1). The phase portrait, fig. 4(b), shows this and v at
the symmetrically related point (2,−1) plotted so that reflection in y in the physical domain
corresponds to reflection about the 45◦ line. The flow at t = 0 is perturbed slightly from ub.
Oscillations develop which saturate in the periodic vortex shedding state. There is an increase
in the oscillation frequency as the oscillation amplitude grows. This is the manifestation of
the under-prediction of St by the stability analysis of ub. The oscillations do not develop
symmetrically about ub, resulting in a change in the mean flow as the oscillations grow.

We would like to investigate the eigenvalues of the effective instantaneous mean flow as
the oscillations grow. However, because the mean changes quite quickly on the time scale
of the oscillations, extracting a precise instantaneous mean flow in the transient regime is
problematic. A well-defined and meaningful family of steady flows is that given by solutions
to eqs. (5) where F is replaced by αF . This gives ub at α = 0 and ū at α = 1 and accounts for
the growth of Reynolds stresses with oscillation amplitude. Figure 4(c) shows the relationship
between growth rate and frequency as α varies between 0 and 1.25, extrapolating slightly
beyond the mean flow at saturation. (Other families of flows, such as a linear interpolation

Fig. 4 – Relationship between the base flow ub (denoted by squares) and the mean flow ū (denoted
by triangles) at Re = 100. (a) Time series and (b) phase portrait showing the evolution from ub. The
dashed line indicates the subspace of symmetric states. (c) Real and imaginary part of eigenvalues
from stability analysis of solutions to eqs. (5) with αF , 0 ≤ α ≤ 1.25. Dashed lines indicate σ = 0
and f = 0.167, the Strouhal number at Re = 100.
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u = αū + (1 − α)ub, give qualitatively similar results.) The interpretation is that, whatever
the exact path taken by the instantaneous mean flow, the growth rate decreases and the
eigenfrequency increases as oscillations grow. The oscillations saturate precisely when growth
rate of the mean reaches zero, at which point the eigenfrequency is the Strouhal number.

Discussion. – Wesfreid et al. [12, 13, 15, 21] and Noack et al. [19, 20] have discussed at
length the relationship between base flows and mean flows in the cylinder wake and related
flows. In particular they have proposed that mean flow modification, through the formation
of Reynolds stresses, is the mechanism for nonlinear saturation of oscillatory instability. The
fully two-dimensional linear analysis presented here confirms a picture of nonlinear saturation
in which the mean flow evolves to a state of marginal stability, at which point oscillations
saturate in amplitude and have a frequency given by the eigenfrequency of the mean flow.
Marginal stability of the mean flow is thus implicated in the selection of both amplitude and
frequency in the oscillatory wake. It remains to be seen whether this result holds for other
simple laminar flows.
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