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8. TURBULENCE MODELLING IN CFD SPRING 2007 
 
8.1 Turbulence models for general-purpose CFD 
8.2 Linear eddy-viscosity models 
8.3 Non-linear eddy-viscosity models 
8.4 Differential stress models 
8.5 Implementation of turbulence models in CFD 
 
 
8.1 Turbulence Models For General-Purpose CFD 
 
Turbulence models for general-purpose CFD must be frame-invariant – i.e. independent of 
any particular coordinate system – and hence must be expressed in tensor form. This rules out 
simpler models of boundary-layer type (e.g. mixing-length models). 
 
Turbulent flows are computed either by solving the Reynolds-averaged Navier-Stokes 
equations with suitable models for turbulent fluxes or by computing the fluctuating quantities 
directly. The main approaches are summarised below. 
 
Reynolds-Averaged Navier-Stokes (RANS) Models 
• Linear eddy-viscosity models (EVM) 
  – assume that the (deviatoric) turbulent stress is proportional to the mean strain; 
  – use an eddy viscosity constructed from turbulence scalars (usually k + one other), 

determined by solving transport equations. 
 
• Non-linear eddy-viscosity models (NLEVM) 
  – assume that the turbulent stress is a non-linear function of mean strain and vorticity; 
  – use coefficients constructed from turbulence scalars (usually k + one other), 

determined by solving transport equations; 
  – mimic response of turbulence to certain important types of strain. 
 
• Differential stress models (DSM) 
  – aka Reynolds-stress transport models (RSTM) or second-order closure (SOC); 
  – solve transport equations for all turbulent fluxes. 
 
 
Computation of fluctuating quantities 
• Large-eddy simulation (LES) 
  – compute time-varying flow, but model sub-grid-scale motions. 
 
• Direct numerical simulation (DNS) 
  – no modelling; resolve the smallest scales of the flow. 
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8.2 Linear Eddy-Viscosity Models 
 
8.2.1 General Form 
 
Stress-strain constitutive relation:  
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The eddy viscosity � t is derived from turbulent quantities such as the turbulent kinetic energy 
k and dissipation rate � . These quantities are themselves determined by solving scalar-
transport equations (see below). 
 
A typical shear stress and normal stress are given by 
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From these the other stress components are easily deduced by inspection/cyclic permutation. 
 
 
General Comments 
• �  is a physical property of the fluid and can be measured; � t is a hypothetical property 

of the flow and must be modelled. 
• �

t varies with position. 
• At high Reynolds numbers, � t � �  throughout much of the flow. 
 
Advantages 
• Easy to implement in viscous solvers. 
• Extra viscosity aids stability. 
• Some theoretical foundation in simple shear flows. 
 
Disadvantages 
• Little turbulence physics; in particular, anisotropy and history effects are neglected. 
• Turbulent transport of momentum is determined by a single scalar � t, so at most one 

Reynolds stress ( uv
− ) can be represented accurately; such models are questionable 
in complex flow. 

 
 
Most eddy-viscosity models in general-purpose CFD codes are of the 2-equation type; (i.e. 
scalar-transport equations are solved for 2 turbulent scales). The commonest types are k-�  and 
k-�  models, for which specifications are given below. 
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8.2.2 k-  Models 
 
Eddy viscosity: 
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Scalar-transport equations (non-conservative form): 
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Diffusivities � (k) and � (� ) are related to the eddy viscosity via Prandtl numbers � : 
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and the rate of production of turbulent kinetic energy (per unit mass) is 
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In the standard k-�  model (Launder and Spalding, 1974) the coefficients take the values 
 C �  = 0.09,        C 
 1 = 1.92,        C 
 2 = 1.44,        � (k) = 1.0,        � ( 
 ) = 1.3 (5) 
 
Other important variants include RNG k-�  (Yakhot et al., 1992) and low-Re models such as 
Launder and Sharma (1974), Lam and Bremhorst (1981), and Lien and Leschziner (1993). 
 
Modifications are employed in low-Re models to incorporate effects of molecular viscosity. 
Specifically, C � , C 
 1 and C 
 2 are multiplied by viscosity-dependent factors f� , f1 and f2 
respectively, and an additional source term S( 
 ) may be required in the �  equation. Some 
models (notably Launder and Sharma, 1974) solve for the homogeneous dissipation rate �~  
which vanishes at solid boundaries and is related to �  by 
 22/1 )(�2,�~� kDD ∇=+=  (6) 

This is consistent with the theoretical near-wall behaviour, 2/�2� yk∼ . 
 
 
8.2.3 k-  Models 
 

�  (nominally equal to 
kC �

�
) is sometimes known as the specific dissipation rate and has 

dimensions of 1/time, or frequency. 
 
Eddy viscosity: 

 �� k
t =  (7) 

 



 
CFD 8-4 David Apsley 

Scalar-transport equations: 
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The diffusivities of k and �  are related to the eddy-viscosity: 
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The original k-�  model was that of Wilcox (1988a) with coefficients taking the values 
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9
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3�
= ,      � (k) = 2.0,     � ( � ) = 2.0 (9) 

The model was further developed by Wilcox (1998) in his book, with the coefficients 
becoming functions of the turbulent Reynolds number. 
 
Menter (1994) devised a shear-stress-transport (SST) model. The model, which is expressed 
in k-�  form, blends the k-�  model (which is – allegedly – superior in the near-wall region), 
with the k-�  model (which is less sensitive to the level of turbulence in the free stream). 
 
All models of k-�  type suffer from a problematic wall boundary condition (�  
  �  as y → 0). 
 
 
8.2.4 Behaviour of Linear Eddy-Viscosity Models in Simple Shear 
 
In simple shear flow the shear stress is 
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The three normal stresses are predicted to be equal: 
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whereas, in practice, there is considerable anisotropy; e.g. in the 
log-law region: 

6.0:4.0:0.1:: 222 ≈wvu  
 
Actually, in simple shear flows, this is not a problem, since only the gradient of the shear 

stress uv�  plays a dynamically-significant role in the mean-momentum equation. However, it 
is a warning of more serious problems in complex flows. 
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8.3 Non-Linear Eddy-Viscosity Models 
 
8.3.1 General Form 
 
The stress-strain relationship for linear eddy-viscosity models gives for the deviatoric 
Reynolds stress (i.e. subtracting the trace): 
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Dividing by k and writing �/� 2� kCt =  gives 
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We define the LHS of (10) as the anisotropy tensor aij; it is the dimensionless and traceless 
form of the Reynolds stress: 
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For the RHS of (10), the symmetric and antisymmetric parts of the mean-velocity gradient 
are called the mean strain and mean vorticity tensors, respectively: 
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These can be made non-dimensional using the turbulent timescale k/� . Using lower case for 
the non-dimensional forms: 
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Equation (10) can then be written in the simpler form 
 ijij sCa 
2−=  

or, 
 sa 
2C−=  (14) 

Hence, the constitutive relation for linear eddy-viscosity models simply says: 
“anisotropy tensor is proportional to dimensionless mean strain”  

 
The main idea of non-linear eddy-viscosity models is to generalise this to a non-linear 
relationship between the anisotropy tensor and the mean strain and vorticity: 
 ),(2 
 sNLsa +−= C  (15) 

 
Additional non-linear components cannot be completely arbitrary, but must be symmetric and 
traceless. For example a quadratic NLEVM must be of the form 
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where { .}  denotes a trace and I is the identity matrix: 
 iiMtrace ≡≡ )(}{ MM ,         ijij 
)( ≡I  (17) 

We shall see below that an appropriate choice of the coefficients 
�

1, 
�

2 and 
�

3 allows the 
model to reproduce the correct anisotropy in simple shear. 
 
Theory (based on the Cayley-Hamilton Theorem) shows that the most general relationship 



 
CFD 8-6 David Apsley 

involves ten independent tensor bases and includes terms up to the 5th power in s and : 
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where all T �  are linearly-independent, symmetric, traceless, second-rank tensor products of   
s and . One possible choice of bases (but by no means the only one) is 
 
 Linear: sT =1   
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Exercise. (i) Prove that all these bases are symmetric and traceless. 
 (ii) Show that bases T5 – T10 vanish in 2-d incompressible flow. 
 
 
The first base corresponds to a linear eddy-viscosity model and the next three to the quadratic 
extension in equation (16). T5, T7, T8, T9 contain multiples of earlier bases and hence could 
be replaced by simpler forms; however, the bases chosen here ensure that they vanish in 2-d 
incompressible flow. 
 
A number of routes have been taken in devising such NLEVMs, including: 
• assuming the form of the series expansion to quadratic or cubic order and simply 

calibrating against important flows (e.g. Speziale, 1987; Craft, Launder and Suga, 
1996); 

• simplifying a differential stress model by an explicit solution (e.g. Speziale and 
Gatski, 1993) or by successive approximation (e.g. Apsley and Leschziner, 1998); 

• renormalisation group methods (e.g. Rubinstein and Barton, 1990); 
• direct interaction approximation (e.g Yoshizawa, 1987). 
 
In devising such NLEVMs, model developers have sought to incorporate such physically-
significant properties as realisability: 
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8.3.2 Cubic Eddy-Viscosity Models 
 
The preferred level of modelling at the University of Manchester is a cubic eddy viscosity 
model, which can be written in the form 
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(20) 
Note the following properties (some of which will be developed further below and on the 
example sheet). 
(i) A cubic stress-strain relationship is the minimum order with at least the same number 

of independent coefficients as the anisotropy tensor (i.e. 5). In this case it will be 
precisely 5 if we assume 

�
3 = 0 (see (vi) below) and note that the �

1 and �
2 terms are 

tensorially similar to the linear term (see (iv) below). 
(ii) The first term on the RHS corresponds to a linear eddy-viscosity model. 
(iii) The various non-linear terms evoke sensitivities to specific types of strain: 
  – the quadratic (

�
1, 

�
2, 

�
3) terms evoke sensitivity to anisotropy; 

  – the cubic �
1 and �

2 terms evoke sensitivity to curvature; 
  – the cubic �

4 term evokes sensitivity to swirl. 
(iv) The �

1 and �
2 terms are tensorially proportional to the linear term; however they (or 

rather their difference) provide a sensitivity to curvature, so have been kept distinct. 
(v) The �

3 and �
4 terms vanish in 2-d incompressible flow. 

(vi) Theory and experiment indicate that pure rotation generates no turbulence. This 
implies that 

�
3 ought to be 0, at least in the limit 0→S . 

 
 
As an example of such a model we cite the Craft et al. (1996) model in which coefficients are 
functions of the mean-strain invariants and turbulent Reynolds number: 
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The coefficients of the non-linear terms are (in the present notation): 
 ��321 )04.1,4.0,4.0()
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Non-linearity is built into both tensor products and strain-dependent coefficients – notably 
C � . The model is completed by transport equations for k and �~ . Mean strain and vorticity are 
non-dimensionalised using �~  rather than � . 
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8.3.3 General Properties of Non-Linear Eddy-Viscosity Models 
 
(i) 2-d Incompressible Flow 
 
The non-linear combinations of s and  have particularly simple forms in 2-d 
incompressible flow. In such a flow: 
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Incompressibility ( 2211 ss −= ) and the symmetry and antisymmetry properties of sij and �

ij 

( 1221 ss = , 1221
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From these we find 
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PROPERTY 1 
In 2-d incompressible flow: 
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where I2 = diag(1,1,0). In particular, taking tensor products of s2 or 2 with matrices whose 
third row and third column are all zero has the same effect as multiplication by the scalars 

}{ 2
2
1 s  or }{ 2

2
1 �  respectively. 

 
 
 
PROPERTY 2 
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Moreover, in 2-d incompressible flow the quadratic terms do not contribute to the production 
of turbulent kinetic energy. 
Proof. 
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Now 0
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This is true for any incompressible flow, but, in the 2-d case, multiplying (20) by s, taking 
the trace and using the results (25) it is found that the contribution of the quadratic terms to 
{ as}  is 0. 
 
 
PROPERTY 3 
In 2-d incompressible flow the � 3- and � 4-related  terms of the non-linear expansion (20) 
vanish. 
Proof. Substitute the results (25) for s2 and 2 into (20). 
 
 
 
(ii) Particular Types of Strain 
 
The non-linear constitutive relationship (20) allows the model to mimic the response of 
turbulence to particular important types of strain. 
 
PROPERTY 4 
The quadratic terms yield turbulence anisotropy in simple shear: 
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This may be deduced by 
substituting the results (24) into 
(20), noting that s11 = 0, whilst 

 �
2

1�
2

1�
1212 =

∂
∂==

y

Uk
s  

 
 
As an example the figure right 
shows application of the Apsley 
and Leschziner (1998) model to 
computing the Reynolds stresses in 
channel flow. 
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PROPERTY 5 
The � 1 and � 2-related cubic terms yield the correct sensitivity to curvature. 

 In curved shear flow, 
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Inspection of the production terms in the stress-
transport equations (Section 7.4) shows that 
curvature is stabilising (reducing turbulence) if 
Us increases in the direction away from the 
centre of curvature (∂Us/∂R > 0) and 
destabilising (increasing turbulence) if Us 
decreases in the direction away from the centre 
of curvature (∂Us/∂R < 0). In the constitutive 
relation (20) the response is correct if � 1 and � 2 
are both positive. 
 
 
PROPERTY 6 
In 3-d flows, the � 4-related term evokes the correct sensitivity to 
swirl. 
 

'stable' curvature
(reducing turbulence)

'unstable' curvature
(increasing turbulence)  

U
W
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8.4 Differential Stress Modelling 
 
Differential stress models (aka Reynolds-stress transport models or second-order closure) 

solve a separate scalar-transport equation for each stress component jiuu : 
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(For a derivation see the course notes for the “Boundary Layers”  module). 
 
Such models, in principle, contain much more turbulence physics because the rate-of-change, 
advection and production terms are exact. The nearest thing to a standard model is a high-Re 
closure based on that of Launder et al. (1975) and Gibson and Launder (1978). 
 
Term Name and role Model 

t

uu ji

D

)(D�  
RATE OF CHANGE 
(time derivative + advection) 
Transport with the mean flow.  

 
EXACT 
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Generation of turbulence energy 
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PRODUCTION (body forces) 
Generation of turbulence energy 
by body forces. 

EXACT (in principle) 
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Removal of turbulence energy by 
viscosity 
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Typical values of the constants are: 
 3.0,5.0,6.0,8.1 )(

2
)(

121 ==== ww CCCC  (29) 



 
CFD 8-12 David Apsley 

Energy in Turbulent Fluctuations 
 
In simple shear flow (where ∂U/∂y is the only non-zero mean-velocity gradient) the 
production terms of the normal stresses are: 

 0,2 332211 ==
∂
∂−= PP

y

U
uvP  

Hence, production of turbulence energy predominantly feeds the 2u  component. Energy is 
then transferred to fluctuations in the cross-stream directions by the redistributive effect of 
pressure fluctuations. At small scales local gradients are sufficiently large for viscosity to 
dissipate turbulent energy. 
 
There is a continual energy cascade from the energy entering the turbulence at the large 
scales of the flow, though shear instabilities continually producing eddies at smaller scales, 
until ultimately energy is removed by viscosity. 
 

 

PRODUCTION ADVECTION by mean flow 

2u 2v
2w

REDISTRIBUTION 

DISSIPATION by viscosity 

by pressure fluctuations 
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The stress-transport equations must be supplemented by a means of specifying 
�
 – typically 

by its own transport equation, or one for a related quantity such as � . 
 
As is suggested by the table, the most significant term requiring modelling is the pressure-
strain correlation (which is formed, in practice, by the average product of pressure 
fluctuations and fluctuating velocity gradients). This term is traceless (i.e. the sum of the 
diagonal terms 0

���

332211 =++ ) and its accepted role is to promote isotropy – hence the 

form of model for )1(�

ij  and )2(�

ij . Near walls this isotropising tendency must be over-ridden, 

necessitating a “wall-correction”  term )(� w
ij . 

 
Where body forces are present (e.g. in buoyant or rotating flows) additional production terms 
must be included. 
 
 
General Assessment of DSMs 
 
For: 
• Include more turbulence physics than eddy-viscosity models. 
• Advection and production terms (“energy-in”  terms) are exact and do not need 

modelling. 
 
Against: 
• Models are very complex and many important terms (particularly the redistribution 

and dissipation terms) require modelling. 
• Models are very expensive computationally (6 stress-transport equations in 3 

dimensions) and tend to be numerically unstable (only the small molecular viscosity 
contributes to any sort of gradient diffusion term). 

 
 
Other DSMs of Interest  
 
• Speziale et al. (1991) – non-linear 

�
ij formulation, eliminating wall-correction terms; 

• Craft (1998) – low-Re DSM, attempting to eliminate wall-dependent parameters; 
• Jakirli �  and Hanjali �  (1995) – low-Re DSM admitting anisotropic dissipation; 
• Wilcox (1988b) – low-Re DSM, with �  rather than 

�
 as additional turbulent scalar. 

 
Excellent references for developments in Reynolds-stress transport modelling can be found in 
Launder (1989) and Hanjali �  (1994). 
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8.5 Implementation of Turbulence Models in CFD 
 
8.5.1 Transport Equations 
 
The implementation of a turbulence model in CFD requires: 

(1) a means of specifying the turbulent stresses jiuu , by either: 

  – a constitutive relation (eddy-viscosity models), or 
  – individual transport equations (differential stress models); 
 
(2) the solution of additional scalar-transport equations. 
 
 
Special Considerations for the Mean Flow Equations 
 

• jiuu�  represents a turbulent flux of Ui-momentum in the xj direction, but only a part 

of this can be treated implicitly as a diffusion-like term. e.g. for the U equation 
through a face normal to the y direction: 

  
���� ����� �����

sourcetodtransferre
part

diffusive

t termslinearnon
x

V

y

U
uv )()(�� −+

∂
∂+

∂
∂=−  

 The non-diffusive part of the flux is transferred to the source term (and treated 
explicitly – i.e. held constant for that iteration). Nevertheless, it is still treated in a 
conservative fashion; i.e. it is worked out on a cell face so that the mean momentum 
lost by one cell is equal to that gained by its neighbour. 

  
• The lack of a turbulent viscosity in differential stress models can lead to numerical 

instability. This can be addressed by the use of “effective viscosities”  – see below. 
 
 
Special Considerations for the Turbulence Equations 
 
• They are usually source-dominated; i.e. the most significant terms are production, 

redistribution and dissipation; (this is sometimes used as an excuse for a low-order 
advection scheme). 

 
• Variables such as k and 

�
 must be non-negative. This demands: 

  – care in discretising the source term (see below); 
  – use of an unconditionally-bounded advection scheme. 
 
 
Source-Term Linearisation For Non-Negative Quantities 
 
The general discretised scalar-transport equation for a control volume centred on node P is 
 PPP

F
FFPP sbaa φ+=φ−φ �  

For stability one requires 
 0≤Ps  

To ensure non-negative φ one requires, in addition, 
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 0≥Pb  
You should, by inspection of the k and 

�
 transport equations (3), be able to identify how the 

source term is linearised in this way, with one positive part and one negative part, the latter 
preferably proportional to the transported variable, k or 

�
. 

 
If bP < 0 for a quantity such as k or 

�
 which is always non-negative (e.g. due to transfer of 

non-linear parts of the advection term or non-diffusive fluxes to the source term) then, to 
ensure that the variable doesn’ t become negative, the source term should be rearranged as 

 

0

)(
*

→

φ
φ

+→

P

P

P

P
PP

b

b
ss

 (30) 

where *  denotes the current value of a variable. 
 
 
8.5.2 Wall Boundary Conditions 
 
At walls the no-slip boundary condition applies, so that both mean and fluctuating velocities 
vanish. At high Reynolds numbers this presents three problems: 
• there are very large flow gradients; 
• wall-normal fluctuations are suppressed (i.e. selectively damped); 
• viscous and turbulent stresses are of comparable magnitude. 
 
There are two main ways of handling this in turbulent flow: 
•••• low-Reynolds-number turbulence models 
  – resolve the flow right up to the wall with a very fine grid and viscous 

modifications to the turbulence equations to ensure the correct near-wall 
rather than log-layer behaviour; 

•••• wall functions 
  – use a coarser grid and assume theoretical profiles between the near-wall 

node and the boundary. 
 
 
Low-Reynolds-Number Turbulence Models 
 
• Aim to resolve the flow right up to the boundary. 
 
• Have to include effects of molecular viscosity in the coefficients of the eddy-viscosity 

formula and 
�
 (or � ) transport equations. 

 
• Try to ensure the theoretical near-wall behaviour: 

  )0(�,constant~
�2

~�, 3
2

2 →∝∝ yy
y

k
yk t  (31) 

• Full resolution of the flow requires the near-wall node to satisfy y+ ≤ 1, where 

  
�

� yu
y ≡+ ,             �/�

� wu =  (32) 

  This can be very computationally demanding, particularly for high-speed flows. 
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High-Reynolds-Number Turbulence Models 
 
• Bridge the near-wall region with wall 

functions; i.e. assume profiles (based on 
boundary-layer theory) between near-wall node 
and boundary. 

 
• OK if near equilibrium (e.g. slowly-developing 

boundary layers), but dodgy in highly non-
equilibrium regions (particularly near 
impingement, separation or reattachment 
points). 

 
• The near-wall node should ideally be placed in the region 30 < y+ < 50 (range 15 -150 

generally acceptable). This means that numerical meshes cannot be arbitrarily refined 
close to solid boundaries. 

 
In the finite-volume method, various quantities are required from the wall-function approach. 
Values may be fixed on the wall (w) itself or by forcing a value at the near-wall node (P). 
 
Variable Wall boundary condition Required from wall function 

Mean velocity (U,V,W) (relative) velocity = 0 at the wall Wall shear stress 

k, jiuu  0== kuu ji  at the wall; zero flux Cell-averaged production and 
dissipation 

�
 P

�
 fixed at near-wall node Value at the near-wall node 

 
The means of deriving these quantities are set out below. 
 
 
Mean-Velocity Equation: Wall Shear Stress 
 
The friction velocity u�  is defined in terms of the wall shear stress: 
 2��� uw =  

If the near-wall node lies in the logarithmic region then 

 �,)ln(�

1 �

�

uy
yEy

u

U P
PP

P == ++  (33) 

where subscript P denotes the near-wall node. Given the value of UP this could be solved 
(iteratively) for u�  and hence the wall stress �

w. 
 
However, a better approach when the turbulence is clearly far from equilibrium (e.g. near 
separation or reattachment points) is to estimate an “equivalent”  friction velocity from the 
turbulent kinetic energy: 
 2/14/1�0 PkCu =  

and integrate the mean-velocity profile assuming an eddy viscosity 
�

t. If we adopt the log-law 
version: 
 yut 0

��
=  

Up

w

assumed velocity
profile

control volume

near-wall
node

τ

∆
yp



 
CFD 8-17 David Apsley 

and solve for U from 

 
y

U
tw ∂

∂= � �
�  

we get 

 
)�ln(

�
�/�

0

0

uy
E

Uu

P

P
w =  (34) 

(If the turbulence were genuinely in equilibrium, then u0 would equal u�  and (33) and (34) 
would be equivalent). 
 
A better approach is to assume a total viscosity (molecular + eddy) which matches both the 
viscous (

�
eff = 

�
) and log-layer (

�
eff ∼ � u� y) limits: 

 )}(�,0max{�� �
0 yyueff −+=  (35) 

where y�  is a matching height. Similar integration to before leads to both viscous sublayer and 
log-law limits 

 
�	

�


�

≥−++

≤
×= +++++

+++
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2
00 )} ,(�1ln{�

1
,

�

�

yyyyy

yyy

uu

U w  ,            
�

0yu
y ≡+  (36) 

where we note that y+ is based on u0 rather than the unknown u� . A similar approach can be 
applied for rough-wall boundary layers (Apsley, 2007), where +�y  is a function of roughness. 

A typical (smooth-wall) value of +�y  is 7.37. 

 
As far as the computational implementation is concerned the required output for a finite-
volume calculation is the wall shear stress in terms of the mean velocity at the near-wall 
node, yp, not vice versa. To this end, (36) is conveniently rearranged in terms of an effective 
wall viscosity 

�
eff,wall such that 

 
p

p
walleffw y

U
,

� �� =  (37) 

where 
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k Equation: Cell-Averaged Production and Dissipation 
 
The source term of the k transport equation requires cell-averaged values of production P(k) 
and dissipation rate 

�
. These are derived by assuming profiles for these quantities: 

 
�	

�
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�
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where, for smooth walls, the matching height y 
  and offset yd are given in wall units by (see 
Apsley, 2007): 
 4.27� =+y ,           9.4=+

dy  

 
Integration over a cell (see example sheet) then leads to cell averages 

�
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 �
 Equation: Boundary Condition on 

�
 

 �
P is fixed from its assumed profile (equation (40)) at the near-wall node. A particular value 

at a cell centre can be forced in a finite-volume calculation by modifying the source 
coefficients: 
 PPP bs �

�
,� →−→  

where �  is a large number (e.g. 1030). The matrix equations for that cell then become 
 PFFPP aa �

�
)�( =φ−φ+ �  

or 

 P
PP

FF
P aa

a �
�

�
� +

+
+

φ
=φ �  

Since �  is a large number this effectively forces φP to take the value 
�

P. 
 
 
Reynolds-Stress Equations 
 
For the Reynolds stresses, one method is to fix the values at the near-wall node from the near-

wall value of k and the structure functions kuu ji / , the latter being derived from the 

differential stress-transport equations on the assumption of local equilibrium. For the standard 
model this gives (see the example sheet): 

 

k

v

CC

CCC

k

uv

k

v

C

C

C

CCCC

k

w

k

v

C

C

C

CCCC

k

u

CC

CCCC

k

v

w

w

ww

ww

w

w

2

)(
12

3
1

2
)(

22
3

2

2

1

)(
1

1

2
)(

221
2

2

1

)(
1

1

2
)(

221
2

)(
11

2
)(

221
2

1

1

3

2

22

3

2

2

21

3

2

�
�
�

�
�
�
�

�

+
+−

=−

+��
�

�
��
�

� +++−
=

+��
�

�
��
�

� +−+
=

��
�

�
��
�

�

+
−++−

=

 (43) 

 
With the values for C1, C2, etc. from the standard model this gives 
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 255.0,654.0,248.0,098.1
222

=−===
k

uv

k

w

k

v

k

u
 (44) 

 
When the near-wall flow and wall-normal direction are not conveniently aligned in the x and 
y directions respectively, the actual structure functions can be obtained by rotation. However, 
for 3-dimensional and separating/reattaching flow the flow-oriented coordinate system is not 
fixed a priori and can swing round significantly between iterations if the mean velocity is 
small, making convergence difficult to obtain. A second – and now my preferred – approach 
(Apsley, 2007) is to use cell-averaged production and dissipation in the Reynolds-stress 
equations in the same manner as the k-equation, noting that, in simple shear and in flow-
aligned coordinates: 

 )(
11 22 kP

y

U
uvP =

∂
∂−= ,      03322 == PP  

 )(
2

2
12
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uv

v

y

U
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∂
∂−= ,       03123 == PP  

with the ratio uvv /2  determined from (44) as –0.97. In the wall-function formulation, P(k) is 
proportional to the square of the velocity at the near-wall node, so rotating from flow-aligned 
coordinates to the actual Cartesian coordinate system does not cause discontinuities in the 
stress production where the velocity reverses sign; e.g. near separation or reattachment 
points. 
 
 
8.5.3 Effective Viscosity for Differential Stress Models 
 
DSMs contain no turbulent viscosity and have a reputation for numerical instability. 
 
An artificial means of promoting stability is to add and subtract a gradient-diffusion term to 
the turbulent flux: 

 � �� �� �� ����� �
)

�
(
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U
uuuu

∂
∂

−
∂
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+=  (45) 

with the first part averaged between nodal values and the last part discretised across a cell 
face and treated implicitly; (very similar to the Rhie-Chow algorithm for pressure-velocity 
coupling in the momentum equations). 
 
The simplest choice for the effective viscosity 

�
���  is just 

 �
�� 2

���� k
Ct ==  (46) 

 
A better choice is to make use of a natural linkage between individual stresses and the 
corresponding mean-velocity gradient which arise from the actual stress-transport equations. 
 
Assuming that the stress-transport equations (with no body forces) are source-dominated then 
 0��

≈−+ ijijijP  

or, with the basic DSM (without wall-reflection terms), 
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Expand this, identifying the terms which contain only �� uu  or �
�

x

U

∂
∂

 as follows. 

 

For the normal stresses 2
�u : 
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Similarly for the shear stresses �� uu : 
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Hence, from the stress-transport equations, 
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where the effective viscosities (both for the Uα component of momentum) are: 

 �
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Note that the effective viscosities are anisotropic, being linked to particular normal stresses. 
 
A more detailed analysis can accommodate wall-reflection terms in the pressure-strain model, 
but the extra complexity is not justified. 
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