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Fundamental23. Fundamentals of Data Processing

In this chapter the fundamentals of statistical pa-
rameter estimation are reviewed for applications
typical in experimental fluid mechanics. The chap-
ter begins with a review of the probability density
function and its moments and continues with
common estimators for the mean and variance of
stationary random processes. A brief introduction
to signal noise is given as a prelude to a rigor-
ous discussion of the Cramér–Rao Lower Bound
(CRLB). The CRLB represents the lower bound of
variance of unbiased estimators of a parameter.
This concept is deepened using illustrations from
the laser Doppler, phase Doppler and PIV mea-
surement techniques. The chapter closes with a
short discussion about the propagation of errors in
a measurement chain.
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23.1 Statistical Principles

The first concept to be introduced is the probability
distribution function P(x), which is the probability as-
signed to a set of points k, such that the random variable
x(k) satisfies x(k) ≤ x, where x is some fixed value.

P(x) = Prob[x(k) ≤ x] . (23.1)

This set of points x(k) ≤ x is a subset of all points
satisfying x(k) ≤ ∞. Thus

P(−∞) = 0 , P(∞) = 1 . (23.2)

The probability density function (PDF) p(x) is defined
by the relation

p(x) = lim
∆x→0

(
Prob [x < x(k) ≤ x +∆x]

∆x

)
. (23.3)

Thus,

p(x) ≥ 0 , (23.4)
∞∫

−∞
p(x)dx = 1 , (23.5)

P(x)=
x∫

−∞
p(ξ)dξ ; dP(x)

dx
= p(x) . (23.6)

The next concept to be discussed is that of expected
values. The expected value for any real, single-valued,
continuous function g(x) of the random variable x(k) is
given by

E {g [x(k)]} =
∞∫

−∞
g(x)p(x)dx (23.7)

in particular, for g(x) = x, the mean value of x(k) is
obtained by

E [x(k)] = µx =
∞∫

−∞
x p(x)dx (23.8)

and for g(x) = x2, the mean square value of x(k) is
obtained by

E
[
x2(k)

]= ψ2
x =

∞∫
−∞

x2 p(x)dx . (23.9)
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1400 Part D Analysis and Post-Processing of Data

The quantities defined in (23.8) and (23.9) are also
known as the first and second moments of the random
variable x(k). Note that often x̄ is used instead of µx for
the mean value of x(k). Furthermore, often the variance
of x(k), σ2

x , is used rather than the mean square value,

σ2
x = ψ2

x −µ2
x =

∞∫
−∞

(x −µx)
2 p(x)dx . (23.10)

The standard deviation σx of x(k) is the square root of
the variance. Equation (23.10) is one example of the
more general r-th-order central moment

µr =
∞∫

−∞
(x −µx)

r p(x)dx (23.11)

which quantifies deviations of x(k) about its mean value.
Similar expressions can be written for the bivariate

case, in which two random variables x(k) and y(k) are
considered. The joint probability function is defined by

P(x, y) = Prob [x(k) ≤ x and y(k) ≤ y] (23.12)

and the associated joint probability density function by

p(x, y)

= lim
∆x→0
∆y→0

⎛
⎝Prob

[
x<x(k)≤x+∆x

and y<y(k)≤y+∆y

]
∆x∆y

⎞
⎠ (23.13)

yielding also

p(x, y) ≥ 0 , (23.14)
∞∫

−∞

∞∫
−∞

p(x, y)dx dy = 1 , (23.15)

P(x, y) =
y∫

−∞

x∫
−∞

p(ξ, η)dξ dη ,

∂2 P(x, y)

∂x∂y
= p(x, y) . (23.16)

The two random variables are said to be statistically
independent if

p(x, y) = p(x)p(y) . (23.17)

The expected value of any real, single-valued, con-
tinuous function g(x, y) of two random variables x(k)
and y(k) is given by

E [g(x, y)] =
∞∫

−∞

∞∫
−∞

g(x, y)p(x, y)dx dy (23.18)

One special example is when g(x, y) = [x(k)−µx ]
× [y(k)−µy], where µx and µy are the respective mean
values. The expected value is known as the covariance

Cxy = E
{[

x(k)−µx
][

y(k)−µy
]}

= E [x(k)y(k)]− E [x(k)] E [y(k)]

=
∞∫

−∞

∞∫
−∞

[
x(k)−µx

][
y(k)−µy

]
p(x, y)dx dy .

(23.19)

The correlation coefficient is then defined by

ρxy = Cxy

σxσy
(23.20)

which lies between −1 and +1.
Data processing deals with the estimation of rele-

vant process statistics from the primary measurement
quantities. The term estimation, rather than determina-
tion or computation, is used, since in almost all cases, the
physical process has a stochastic part, meaning that the
result of an estimation is a random variable (even an ex-
act replication of the experiment would yield a slightly
different answer). The procedure or computational al-
gorithm used to obtain the estimation is known as the
estimator.

Estimators are evaluated on the basis of three prop-
erties. First, the expected value of the estimation should
be equal to the parameter being estimated

E
(
φ̂
)

= φ . (23.21)

If this is true, the estimator is unbiased. Note that an
estimator is often signified by the hat symbol. Second,
the mean square error of the estimator should be smaller
than for any other possible estimator.

E[(φ̂1 −φ)2] ≤ E[(φ̂i −φ)2] . (23.22)

In this case the estimator φ̂1 is said to be efficient. Note
that the smallest possible estimation variance for any
unbiased estimator is given by the Cramér–Rao lower
bound (CRLB). Finally, the estimate should converge to
the parameter being estimated for a large sample number
or for a long observation time

lim
N→∞ Prob(|φ̂−φ| ≥ ε) = 0 . (23.23)

For an arbitrarily small ε > 0, the estimator is said
to be consistent. A sufficient condition to meet this
requirement is

lim
N→∞[(φ̂−φ)2] = 0 . (23.24)
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Fig. 23.1a,b Gaussian (normal) dis-
tribution illustrating confidence limits.
(a) For ±σ (68%), (b) For ±2σ (95%)

The mean square error used above can be expanded
to yield

E[(φ̂−φ)2] = E
{[φ̂− E(φ̂)+ E(φ̂)−φ]2}

= E
{[φ̂− E(φ̂)]2}

+ E
{[E(φ̂)−φ]2} . (23.25)

Hence, the mean square error is the sum of two parts:
the first part is a variance term that describes the random
part of the error

var(φ̂) = E
{[φ̂− E(φ̂)]2}= E(φ̂2)− E2(φ̂) ,

(23.26)

which can be made arbitrarily small by increasing the
sample size. The second part is the square of a bias term
describing the systematic portion of the error

b2(φ̂) = E
{[E(φ̂)−φ]2} . (23.27)

This part is not influenced directly by the sample size
and can arise from many sources, often found outside of
the data processing. Often special calibration procedures
are required to quantify such errors; however, these will
not be considered further here. In fact, the bias error will
be assumed to be negligible in the following discussion.

Under these conditions and for a small normalized
random error

ε = σ(φ̂)

φ
=
√

var(φ̂)

φ
, (23.28)

the probability density function for the estimates, p(φ̂),
can often be approximated by a Gaussian distribution
with the mean value E(φ̂) = φ and a standard deviation
σ

φ̂
= εφ

p
(
φ̂
)

= 1

εφ
√

2π
exp

⎛
⎜⎝−

(
φ̂−φ

)2

2 (εφ)2

⎞
⎟⎠ . (23.29)

Probability statements about the bounds in which
future estimates φ̂ will lie can thus be made as follows

Prob[φ(1− ε) ≤ φ̂ < φ(1+ ε)] ≈ 0.68 ,

Prob[φ(1−2ε) ≤ φ̂ < φ(1+2ε)] ≈ 0.95 , (23.30)

since for a Gaussian distribution ±σ or ±2σ about
the mean contains, respectively, 68% or 95% of the
probability mass, as sketched in Fig. 23.1.

This leads directly to the concept of confidence in-
tervals, i. e., the interval in which the true value will lie
with a given probability (valid for small ε).

φ̂ (1− ε) ≤φ ≤ φ̂ (1+ ε) with 68% confidence,

φ̂ (1−2ε) ≤φ ≤ φ̂ (1+2ε) with 95% confidence.
(23.31)

The value of ε can be estimated directly from the sam-
pled data, as discussed in the next section.

23.2 Stationary Random Processes

Given some random phenomena, any single time history
of this function is called a sample function. The collec-
tion of all possible sample functions, possibly an infinite
number, is known as a random process or stochastic
process.

The mean value (first moment) of the ensemble of
sample functions at time t1 is then the arithmetic mean
over the instantaneous values of the sample functions
at time t1, as illustrated in Fig. 23.2. A correlation or
joint moment of the process at two different times can be
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1402 Part D Analysis and Post-Processing of Data

computed by taking the ensemble average of the product
of instantaneous values at two times t1 and t1 +τ . These
values can be written as

µx(t1) = lim
N→∞

1

N

N∑
k=1

xk(t1) , (23.32)

Rxx(t1, τ) = lim
N→∞

1

N

N∑
k=1

xk(t1)xk(t1 + τ) , (23.33)

where Rxx is known as the autocorrelation function.
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Fig. 23.2 Ensemble of sample functions defining a random process

A random process is known as weakly stationary
when the value defined by (23.32) is independent of t1
and the autocorrelation is only a function τ , the variance
is limited and the mean value is constant. The process is
known as strongly stationary when also the entire prob-
ability density function is independent of t1. Otherwise
the process is instationary.

Generally, however, statistics of a stationary random
process are not computed over an ensemble of sample
functions but over a time average. For example,

µx(k) = lim
T→∞

1

T

T∫
0

xk(t)dt = µx , (23.34)

Rxx(τ, k) = lim
T→∞

1

T

T∫
0

xk(t)xk(t + τ)dt = Rxx(τ) .

(23.35)

If these values do not differ from those in (23.32)
and (23.33), then the process is said to be ergodic, in
which case the index k is dropped. All stationary pro-
cesses encountered in fluid mechanics can be considered
ergodic.

Note that the covariance function is simply the auto-
correlation function with the mean removed and the
cross-covariance function is the cross-correlation func-
tion with the product of the means removed

Cxx(τ) = Rxx(τ)−µ2
x ,

Cxy(τ) = Rxy(τ)−µxµy . (23.36)

23.3 Estimator Expectation and Variance

In many cases the expectation and variance of an esti-
mator can be derived analytically and several examples
are given below. For more complicated quantities, this is
not always possible and other strategies can be followed.
The jackknife algorithm will be introduced as one such
approach.

23.3.1 Estimators for the Mean

The first estimator to be examined is the mean value.
The most common sample mean estimator is given by

µ̂x = 1

N

N∑
i=1

xi , (23.37)

where xi are individual samples of the process x. Instead
of µ̂x the alternative expression x̄ is also commonly used.

However, the difference between the estimated value and
the true mean value can be shown better using µ̂x and
µx respectively. The estimator of the mean value given
in (23.37) is non-biased, since E(µ̂x) = µx [23.1]. The
mean square error, or variance, of this estimator is then
given by

var(µ̂x) = σ2
µ̂x

= E
[(

µ̂x −µx
)2]

. (23.38)

Substituting (23.37) into (23.38) leads to

σ2
µ̂x

= E

⎡
⎣
(

1

N

N∑
i=1

xi −µx

)2⎤
⎦

= 1

N2 E

⎡
⎣
(

N∑
i=1

xi −µx

)2⎤
⎦ . (23.39)
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Fundamentals of Data Processing 23.3 Estimator Expectation and Variance 1403

If the condition E(xi x j ) = 0 is satisfied, i. e., consecutive
samples are uncorrelated or statistically independent,
(23.39) can be further reduced to

σ2
µ̂x

= 1

N2 E

[
N∑

i=1

(xi −µx)
2

]

= σ2
x

N
, (23.40)

which states that the variance of the mean estimator
decreases with increasing number of samples.

This analysis has been performed for an estimator
based on discrete samples xi ; however, a similar ana-
lysis could be made for a mean estimator based on the
continuous signal x(t)

µ̂x = 1

T

T∫
0

x(t)dt , (23.41)

which differs from the true mean µx , since the integral
is performed only over a finite time T . The variance of
this estimator becomes

var
(
µ̂x
)= σ2

µ̂x
= E

[(
µ̂x −µx

)2]= E
(
µ̂2

x

)
−µ2

x .

(23.42)

In terms of the autocovariance function, this can be
written as [23.1]

σ2
µ̂x

= 1

T

T∫
−T

(
1− |τ |

T

)
Cxx(τ)dτ (23.43)

for a stationary random process. For small τ only Cxx
remains in the integral and for large τ , Cxx goes to zero,
thus the integral can be expressed as

σ2
µ̂x

= 2σ2
x Tx

T
(23.44)

with the integral time scale

Tx = 1

σ2
x

∞∫
0

Cxx(τ)dτ . (23.45)

As pointed out by George [23.2], if the results given by
(23.40) and (23.44) are equated, the condition for statis-
tically independent samples can be obtained, namely

N = T

2Tx
. (23.46)

This is graphically represented in Fig. 23.3 and leads to
two very insightful interpretations.

• Samples are statistically independent if they are
separated by a period of the least 2Tx in time.• Segments of the continuous signal 2Tx in length
contribute to the mean estimate as one, statistically
independent sample.

The manifestation of this relation is that sampling
a signal with time intervals less than 2Tx will not
accelerate the convergence of the mean estimator. At
this point, the difference between data and information
should become very clear. New information (with re-
spect to the mean estimate), comes only every 2Tx time
periods.

Equation (23.44) makes a statement about the neces-
sary observation or measurement time to achieve a given
statistical uncertainty (variance of the mean estimator).
However, to use this equation the integral time scale,
as defined using the autocovariance function, must be
known beforehand. Moreover, the integral time scale
may change by orders of magnitude, e.g., in flow fields
between different points of a single velocity profile. Of-
ten, however, a simple estimate of Tx suffices. This will
be illustrated with the following example of how (23.44)
can be used in practice.

The example chosen is a velocity measurement in
the recirculation zone of a backward-facing step water
flow. In a preliminary measurement the local variance
of the velocity fluctuations is estimated to be 0.2 m2/s2

at point A (Fig. 23.4). The requirement is that the mean
velocity at point A be determined to within ±0.04 m/s
with 95% confidence.

The integral time scale of the velocity fluctuations
can be estimated from appropriate velocity and length
scales, in this case U0 = 2 m/s and xR, which is ap-
proximately 8H or 0.4 m. Thus, Tu = xR/U0 = 0.2 s.
Note that the subscript u for the integral time scale is
used, since the process being measured is the velocity u.
Assuming a normal distribution for the scatter of the es-
timates, the probability of being within ±σū of the true
mean value would be about 68%. This would increase
to the required 95% for ±2σµ̂u .

2σµ̂u = 0.04 m/s , σ2
µ̂u

= 0.0004 m2/s2 . (23.47)

Equation (23.44) can now be solved for the required
measurement time to fulfill this condition

T = 2 σ2
u Tu

σµ̂u

= 200 s . (23.48)

Note that this calculation has been performed in-
dependent of the choice of measurement technique. In
fact, no measurement technique can shorten the nec-
essary observation time given in (23.48), since this
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Fig. 23.3 Graphical interpretation of statistical indepen-
dence of consecutive samples of a continuous process

describes the fundamental statistical behavior of a ran-
dom process.

In practice, it is unusual to make such calcula-
tions prior to every measurement. It is more convenient
to display the current measured mean velocity on-
line, accumulated over all samples up to that time,
and then to allow the user to terminate the measure-
ment when the fluctuations of the mean are below
an acceptable level. Indeed, from the necessary mea-
surement duration, and from the fluctuation level of
the mean, a rough estimate of the integral time scale
can often be made. This technique of user intervention
does not lend itself to automation, so that still a third
approach is often used, in which a fixed number of
samples is used for each point, whereby the number
is chosen to be very large to ensure sufficient con-
vergence for all measurement points. In many flows
there are regions where data rates decrease dramati-
cally, e.g., near walls. In such cases there is often no
choice but to accept a higher degree of statistical uncer-
tainty, since otherwise the data collection time becomes
excessive.

Alternatively, (23.40) could have been used if the
velocity data were available in discrete form at regular
time intervals. Assuming the sample rate was not faster
than every 2Tu , the number of samples required to insure

���������
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Fig. 23.4 Sketch of example backward facing step flow. xR is the
mean reattachment length

the requested accuracy would be

N = σ2
u

σ2
µ̂u

= 0.2 m2/s2

0.0004 m2/s2 = 500 . (23.49)

This discussion puts into perspective expressions
such as ‘high’ or ‘low’ data rates or ‘many’ or ‘few’
samples. The data rate, or the number of samples, must
always be considered with respect to the integral time
scale of the process at the particular measurement point.
This explains the preferred use of data density rather
than data rate. It should also be apparent that, for the
same Reynolds number, measurements performed in air
flows will typically be much shorter in duration than in
water flows, given the same target accuracy. The reason
for this lies in the fact that, for the same Reynolds num-
ber, the integral time scale of an air flow is generally
shorter.

Further guidelines for reporting measurement un-
certainties can be found in Kline and McClintock [23.3],
Kline [23.4] or Moffat [23.5, 6].

23.3.2 Estimators
for Higher-Order Statistics

In the study of turbulence, statistics of not only the
mean velocity but also of higher-order moments are
required. General formula for the estimator variance
for higher-order statistics have been given by Stuart
and Ord [23.7] and Kendall and Stuart [23.8]. Bene-
dict and Gould [23.9] have summarized their results in
the following manner.

An unbiased estimator of the r-th central moment
µr (23.11) is given by

µ̂r = 1

N

N∑
i=1

(
xi − µ̂x

)r
(23.50)

in which the true mean has been replaced by the sample
mean (23.37). Strictly this estimator is unbiased only
for r = 1, however this also applies for higher moments
when N is large. The sampling variance of µ̂r is given by

var
(
µ̂r
)= σ2

µ̂r
= 1

N

(
µ2r −µ2

r +r2µr−1µ2

−2rµr+1µr−1
)
, (23.51)

where terms of order N−2 and higher have been ne-
glected. 95% confidence intervals are then µ̂r ±2σµ̂r .
Note that (23.51) uses µ1 = µ0 = µ−1 and µ2 = σ2

x .
Furthermore, it uses the exact central moments µr ,
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which are actually unknown. However if N is suit-
ably large, typically N = 100, these can be replaced by
the central moment sampling statistics, µ̂r , for practical
computations.

Similarly, the mixed central moment

µr,s =
∞∫

−∞

∞∫
−∞

(x −µx)
r (y −µy

)s
p(x)p(y)dx dy

(23.52)

can be estimated using

µ̂r,s = 1

N

N∑
i=1

(
xi − µ̂x

)r (
xi − µ̂y

)s
(23.53)

which exhibits the variance

var(µ̂r,s) = σ2
µ̂r

= 1

N

(
µ2r,2s −µ2

r,s +r2µ2,0µr−1,s

+ s2µ0,2µ
2
r,s−1 +2rsµ1,1µr−1,sµr,s−1

−2rµr+1,sµr−1,s −2sµr,s+1µr,s−1
)
.

(23.54)

Note that µ10 = µ01 = 0, µr,−1 = µ−1,s = 0, µ20 = σ2
x

and µ02 = σ2
y . Equation (23.54) can be simplified for

normally distributed processes, since then all odd mo-
ments are zero and the second, fourth, sixth and eighth
moments are 1, 3, 15 and 105 times σ2

x , respec-
tively.

The variances of the most common statistics in tur-
bulence research are summarized in Table 23.1, for both
an arbitrary and a normal distribution of the process.
Note that the formulas given in Table 23.1 are multi-
plied by N . The u and v velocity components have been
used for illustration. As an example, the variance of the

Table 23.1 Estimator variances multiplied by N [23.9]

Statistic Variance for any distribution Normal assumption

µu σ2
u σ2

u

σu
µ4−σ4

u
4σ2

u

σ2
u
2

Ruv = µ1, 1 µ2, 2 −µ2
1, 1 (1+ρ2

uv)σ2
u σ2

v

ρuv = µ1, 1
σuσv

ρ2
uv

[
µ2, 2
µ2

1, 1
+ 1

4

(
µ4, 0
σ4

u
+ µ0, 4

σ4
v

+ 2µ2, 2
σ2

u σ2
v

)
−
(

µ3, 1
µ1, 1σ2

u
+ µ1, 3

µ1, 1σ2
v

)]
(1−ρ2

uv)2

σ2
u µ4 −σ4

u 2σ4
u

µ3 µ6 −µ2
3 −6µ4σ

2
u +9σ6

u 6σ6
u

µ2, 1 µ4, 2 −µ2
2, 1 +σ4

u σ2
v +8σ2

u µ2
1, 1 −2σ2

u µ2, 2 −4µ1, 1µ3, 1 2(1+2ρ2
uv)σ4

u σ2
v

µ4 µ8 −µ2
4 −8µ5µ3 +16µ2

3σ
2
u 96σ8

u

mean estimator is given as σ2
u N−1, which agrees with

(23.40).
The expressions in Table 23.1 all assume statistical

independence between samples, as specified by (23.46).
If the sample rate is too high to insure statistical indepen-
dence, the total number of samples N must be adjusted
so that the total observation time yields the desired con-
fidence bounds, according to (23.44). Furthermore, it
should be noted that turbulence quantities are seldom
normally distributed, so that the simplifications given in
Table 23.1 can lead to significant errors if normality is
not previously established.

For more-complex estimators, there exist several re-
sampling algorithms with which the uncertainty of the
measured quantity can be estimated. In particular the
jackknife algorithm will be discussed, as first introduced
by Tukey [23.10]. Notes on its practical implementa-
tion are given by Efron and Tibshirani [23.11] and an
evaluation of its potential with laser Doppler data is
given by Benedict and Gould [23.9]. This algorithm
also assumes statistical independence in the data set
x = (x1, x2, . . . , xN ) when computing some statistical
estimator. The jackknife samples

xjack,i = (x1, x2, . . . , xi−1, xi+1, . . . , xN ) (23.55)

are obtained by leaving out in turn one of the data
samples. The jackknife samples are then used to com-
pute N estimates φ̂jack,i with i = 0, 1, . . . , (N −1). The
jackknife variance for φ̂ is then given by

var(φ̂)jack,i = N −1

N

N∑
i=1

(φ̂jack,i −µ
φ̂jack

)2 , (23.56)
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where

µ
φ̂jack

= 1

N

N∑
i=1

φ̂jack,i . (23.57)

The 95% confidence interval for the estimator is given
by φ̂±2var((φ̂)jack)1/2.

The jackknife algorithm requires N2 calculations
per variance estimate. This computational load can be
greatly reduced if the programming is modified specif-
ically for each statistic to be studied. For example, if
the mean square of the velocity fluctuations σ2

u , is being
studied, the jackknife sample can be written

φ̂jack,i = σ̂2
u,jack,i = 1

N −1

N∑
j=1
j �=i

(u j − µ̂u,jack,i )
2 .

(23.58)

This equation can be rewritten as

σ̂2
u,jack,i = 1

N −1

⎡
⎢⎣

N∑
j=1
j �=i

u2
j −2µ̂u,jack,i

N∑
j=1
j �=i

u j

+ (N −1)(µ̂u,jack,i )
2

⎤
⎥⎦ . (23.59)

Each term in the brackets is summed only once over
all j = 1, . . . N and then decremented by u2

j and u j
respectively for each jackknife replication.

It can be shown theoretically that the jackknife is
biased high on its estimation of uncertainty and thus, it
will never underestimate the uncertainty of a statistic.

23.4 Signal Noise

Noise is essentially any amplitude deviation of an in-
dividual realization of a signal from its ideal model.
Sources of noise are manifold, e.g., shot noise or
thermal noise in any electronics, additional generation-
recombination and modulation noise in semiconductors,
the photon noise for optical components or quantization
noise.

The power of signal fluctuations σ2
s put into relation

with the power of noise fluctuations σ2
n is known as the

signal-to-noise ratio (SNR) and is generally expressed
in decibels:

SNR/dB = +10 log

(
σ2

s

σ2
n

)
. (23.60)

The estimation of the SNR from a given signal seg-
ment is often required in the detection/validation step
of signal processing to indicate whether a result can
be expected to be reliable or not. Unfortunately, the
estimation of the SNR directly from the signal is com-
plicated since the signal fluctuations and the noise are
superimposed. However, noise contributions in the sys-
tem are usually considered to be spectrally white. This
refers to the fact that the total noise power is distributed
evenly over all frequencies up to the upper bandwidth
of the system. Still, the spectral distributions of the use-
ful signal and the noise are superimposed. However,
if the bandwidth of the expected signal model is lim-
ited, the noise power can be derived from the frequency
spectrum.

As an example, in Fig. 23.5, a laser Doppler sig-
nal, a noise signal and the summation of the two in
time, spectral and correlation domain is illustrated.
It becomes obvious from Fig. 23.5 that the power
spectral density (PSD) or the autocorrelation func-
tion (ACF) offer excellent means to monitor SNR and
to determine whether a particle signal is present or
not.

An idealized graphical interpretation of SNR is given
in Fig. 23.6, which shows schematically the PSD of
a Doppler signal logarithmically scaled. The SNR is
given by the ratio of the areas A to B. A more de-
tailed estimation procedure is given by Tropea [23.12].
The noise appears as a base line floor of width ∆ f ,
the bandwidth of the system, and of amplitude σ2

n / fs.
Any filtering of the signal, for instance using a low-pass
filter, will directly decrease area B and thus increase
the SNR, since more of the noise is removed. The
use of a band-pass filter to increase SNR increases the
reliability of the signal detection, since the SNR ac-
ceptance threshold can be chosen higher. In contrast,
the variance of the frequency estimation remains con-
stant because the peak in the spectrum still has the same
width. Indeed, such adjustable input filters are usually
an integral part of any Doppler signal processor. On the
other hand there is a danger in filtering with too nar-
row a bandwidth, since in general the signal frequency
is not known a priori. This can lead to truncation of
the velocity distribution and to a bias of the estimated
moments.
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Fig. 23.5 Representation of a laser Doppler signal, a noise signal and a combination of the two in time, spectral and
correlation domain

The SNR can also be estimated from the auto-
correlation function. Noise, being fully stochastic and
having zero correlation duration, appears only in the
first autocorrelation coefficient, i. e., R(τ = 0). The sta-
tistical scatter (error) of the autocorrelation coefficients
increases with SNR for every ∆τ , given a finite num-
ber of samples. Thus, the SNR can be estimated by
comparing the amplitude of the autocorrelation func-
tion at τ = 0 to the maximum peak amplitude of the
remaining periodicity, exemplary shown in Fig. 22.6c,
Chap. 22 for a high-pass filtered burst signal with added
noise. If the frequency of the periodicity f has al-
ready been determined, the amplitude of the signal AR
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Fig. 23.6 Graphical representation of SNR using the power spectral
density (PSD)
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(Fig. 22.6, Chap. 22) can be estimated by fitting a co-
sine wave to the measured correlation function at points
removed from τ = 0. This can be computed using the
expression

AR ≈ R (n∆τ)

cos (2π fn∆τ)
(23.61)

from which the variance of the noise portion of the signal
can be computed

σ2
n = R (0)− AR2 . (23.62)

The index n should ideally be chosen at the
first maximum or minimum removed from τ = 0.

The SNR is then given as

SNR/dB = 10 log

(
AR2

σ2
n

)
. (23.63)

The presence of noise in the signal can have dif-
ferent effects on the estimation of signal parameters or
statistics. First of all, noise can directly affect the signal
processing and cause systematic errors of the parameter
extraction from individual signals. Furthermore, noise
can disturb the signal detection, which often leads to
a biased selection of signal realizations. In both cases,
the derived signal statistics are biased. But even without
systematic errors, the possible accuracy of the parameter
extraction is limited, known as the Cramér–Rao lower
bound (CRLB), which is discussed in more detail in the
following section.

23.5 Cramér–Rao Lower Bound (CRLB)
The goal of analyzing an acquired signal is to derive
several signal parameters according to a given model
representing the physical basis of the signal generating
process, e.g., a signal frequency, phase or amplitude.
In practical cases, the recorded signals are equidistantly
sampled and time limited, so that the amount of avail-
able information is also finite. Furthermore, the signal is
influenced by noise and this introduces uncertainty into
any parameter determined from the signal. The calcula-
tion of signal parameters is therefore called estimation,
since it contains a random component.

The true values of the parameters to be estimated
are seldom known and different estimation algorithms
(estimators) will also yield different results. Therefore,
it is of interest to quantify the accuracy of each es-
timator statistically. To begin with, the expectation of
the estimator should be equal to the true value, i. e.,
non-biased. Second, the estimator should be efficient,
meaning that it uses all available information to esti-
mate the required parameter as accurately as possible. In
Sect. 23.1, features of estimators are discussed in more
detail. The efficiency of an estimator is quantified by
its variance. While the bias should be zero, the finite
amount of information yields a lower bound of achiev-
able accuracy and thus, a finite variance. For unbiased
estimators this lower bound of variance is given by the
CRLB [23.13, 14].

No unbiased estimator can obtain estimates with
a variance smaller than the CRLB, thus this quantity
can be used to evaluate the performance of a spe-

cific algorithm. On the other hand, the CRLB gives
no information about how an algorithm should process
a measured signal to reach this lower bound. How-
ever, based on estimation theory, and closely related
to the CRLB, the maximum-likelihood (ML) estimator
can be derived. If any unbiased estimator reaches the
CRLB, then the ML estimator will also reach it, at least
asymptotically [23.13, 15].

For a signal

x (t = ti) = xi = mi +ni , i = 0, 1, . . . , (N −1)
(23.64)

with

x =

⎛
⎜⎜⎜⎜⎝

0

x1
...

xN−1

⎞
⎟⎟⎟⎟⎠ , m =

⎛
⎜⎜⎜⎜⎝

m0

m1
...

mN−1

⎞
⎟⎟⎟⎟⎠ ,

n =

⎛
⎜⎜⎜⎜⎝

n0

n1
...

nN−1

⎞
⎟⎟⎟⎟⎠ , x = m+n (23.65)

consisting of the model signal m of known type, the noise
n and the unknown (scalar) parameter a, the CRLB is

Part
D

2
3
.5



Fundamentals of Data Processing 23.5 Cramér–Rao Lower Bound (CRLB) 1409

given by

σ2
a ≥ 1

E

[(
∂ ln p(x,a)

∂a

)2
] = − 1

E
[

∂2 ln p(x,a)
∂a2

] ,

(23.66)

where p(x, a) is the joint probability density function,
(Sect. 23.1), of the measured signal x for a given pa-
rameter a. Since a is normally a vector, (23.66) is the
inverse of a matrix, the Fisher information matrix J,
whose typical element is given by

Jij = E(Hai Ha j ) = −E(Hai a j ) (23.67)

with

Hai = ∂ ln p(x, a)

∂ai
. a =

⎛
⎜⎜⎜⎜⎝

a0

a1
...

aA−1

⎞
⎟⎟⎟⎟⎠ (23.68)

The bound of the i-th unknown element of the parameter
vector a is given by the i-th diagonal element with index
ii of the inverse Fisher information matrix

σ2
ai

≥
(

J−1
)

ii
, (23.69)

where no summation is implied. For uncorrelated and
signal independent noise with power σ2

n , and with
a Gaussian distribution, the joint probability density
function p(x, a) becomes

p(x, a) =
(

1

2πσ2
n

) N
2

exp

[
− 1

2σ2
n

N−1∑
i=0

(xi −mi)
2

]

(23.70)

and the elements of the Fisher information matrix be-
come [23.16]

Jij = 1

σ2
n

N−1∑
k=0

(
∂mk

∂ai

∂mk

∂a j

)
. (23.71)

To derive the lower bounds for a given Doppler burst
this can be calculated and inverted, at least numerically.

23.5.1 Laser Doppler
and Phase Doppler Signals

As an example, the lower bounds for the estimation of
the frequency ω and the phase ϕ will be derived from
a laser Doppler-like signal. Since the parameter vec-
tor a must contain all unknown parameters, including

those that are not estimated (hidden parameters), a con-
stant amplitude of unity during the observation time is
assumed for simplification. The time-dependent signal

x(t) = m(t)+n(t) (23.72)

is composed of the model signal

m (t) = cos (ω t +ϕ) (23.73)

and the time-dependent noise n(t). The measured signal
after sampling is therefore

xi = x(t = ti ) = cos(ω ti +ϕ)+ni ,

i = 0, 1, . . . , (N −1) (23.74)

and each sample is a function of the two model parame-
ters xi (ω, ϕ) and the noise. The sampling times are given
by ti = i/ fs. The noise n is uncorrelated and Gaussian
distributed. The parameter vector is

a =
(

ω

ϕ

)
. (23.75)

The derivatives of the model-parameter-dependent sam-
ples mi = cos(ωti +ϕ) are

∂mi

∂ω
= −ti sin(ωti +ϕ) ,

∂mi

∂ϕ
= − sin(ωti +ϕ) . (23.76)

The Fisher information matrix becomes

J = 1

σ2
n

×

⎛
⎜⎜⎝

N−1∑
i=0

t2
i sin2(ωti +ϕ)

N−1∑
i=0

ti sin2(ωti +ϕ)

N−1∑
i=0

ti sin2(ωti +ϕ)
N−1∑
i=0

sin2(ωti +ϕ)

⎞
⎟⎟⎠ .

(23.77)

The inverse of the Fisher information matrix is

J−1= σ2
n

det(J)

×

⎛
⎜⎜⎝

N−1∑
i=0

sin2(ωti +ϕ) −
N−1∑
i=0

ti sin2(ωti +ϕ)

−
N−1∑
i=0

ti sin2(ωti +ϕ)
N−1∑
i=0

t2
i sin2(ωti +ϕ)

⎞
⎟⎟⎠ .

(23.78)

As an example, a numerical simulation was performed
for the (true) parameters ω = 2, ϕ = 1.1, fs = 10 and
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1410 Part D Analysis and Post-Processing of Data

N = 256. For this and subsequent examples in this sec-
tion, frequencies have been non-dimensionalized using
2π. Thus, for ω = 2, fs = 10, ω = 2, fs = 10 corre-
sponds to 10π samples per cycle. The noise power was
varied logarithmically in 25 steps from e−10 to e+10,
which corresponds to 25 equal steps of SNR, expressed
in dB. The noise power has been normalized with the sig-
nal variance, thus σ2

n = 1 corresponds to SNR = 0 dB.
For each noise level, 1000 independent realizations were
generated. The individual signals were processed by
a least mean square estimation routine, which for Gauss-
ian distributed noise is equal to the maximum-likelihood
estimation. The Fisher information matrix and its inverse
were calculated to be

J = 1

σ2
n

(
130 1653

1653 28356

)
, (23.79)

J−1 = σ2
n

(
0.029787 −0.001737

−0.001737 0.000137

)
. (23.80)

In Fig. 23.7a a sample signal with SNR = 15 dB is il-
lustrated. The results presented in Fig. 23.7b show that
the maximum-likelihood estimator meets the calculated
CRLB. Furthermore, a threshold noise power σ2

n,max can
be seen for the frequency estimate. Above this limit, the
noise dominates the spectrum and the algorithm esti-
mates the frequency randomly from the entire frequency
range. The frequency of the threshold depends not only
on the signal characteristics, but also on the capability of
the estimation procedure to find the correct peak in the
spectrum. The phase range is limited by ±π. Therefore,
the variance of the phase estimation is also limited.
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Fig. 23.7a,b Single-tone parameter estimation. (a) Sample input signal. (b) Comparison of the CRLB with the computed
variance for frequency and phase estimates

In the case of phase Doppler signals, the Doppler
frequency and the phase difference between two signals

xi = cos (ωti +ϕx)+nx,i , i = 0, 1, 2 . . . , (N −1) ,

(23.81)

yi = cos
(
ωti +ϕy

)+ny,i , i = 0, 1, 2 . . . , (N −1) ,

(23.82)

with independent noise components nx and ny are of
interest. To derive the CRLB for the phase difference, it
is convenient to rewrite these signals as

xi = mx,i +nx,i = cos (ωti +ϕ)+nx,i ,

i = 0, 1, 2 . . . , (N −1) , (23.83)

yi = my,i +ny,i = cos (ωti +ϕ+∆ϕ)+ny,i

i = 0, 1, 2 . . . , (N −1) . (23.84)

Since the signals are of the same length with independent
noise components, the joint probability density function
p(x, y, a) now becomes

p(x, y, a)=
(

1

2πσ2
n

)N

exp

(
− 1

2σ2
n

N−1∑
i=0

[(
xi −mx,i

)2

+ (yi −my,i
)2])

(23.85)

with

mx,i = cos (ωti +ϕ) , (23.86)

my,i = cos (ωti +ϕ+∆ϕ) , (23.87)
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and the elements of the Fisher information matrix be-
come

Jij = 1

σ2
n

N−1∑
k=0

(
∂mx,k

∂ai

∂mx,k

∂a j
+ ∂my,k

∂ai

∂my,k

∂a j

)
.

(23.88)

The vector of unknown parameters is

a =
⎛
⎜⎝

ω

ϕ

∆ϕ

⎞
⎟⎠ . (23.89)

Note that ϕ is included in the parameter vector since it
is unknown, even though it is not used. The derivatives
of mx and my are

∂mx,i

∂ω
= −ti sin (ωti +ϕ) , (23.90)

∂mx,i

∂ϕ
= − sin (ωti +ϕ) , (23.91)

∂mx,i

∂∆ϕ
= 0 , (23.92)

∂my,i

∂ω
= −ti sin (ωti +ϕ+∆ϕ) , (23.93)

∂my,i

∂ϕ
= − sin (ωti +ϕ+∆ϕ) , (23.94)

∂my,i

∂∆ϕ
= − sin (ωti +ϕ+∆ϕ) . (23.95)
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Fig. 23.8a,b Single-tone parameter estimation from two orthogonal signals. (a) Sample input signals. (b) Comparison of
the CRLB with computed variance for frequency, phase and phase difference estimates

The Fisher information matrix becomes

J = 1

σ2
n

⎛
⎜⎝

P2 + Q2 P1 + Q1 Q1

P1 + Q1 P0 + Q0 Q0

Q1 Q0 Q0

⎞
⎟⎠ (23.96)

with

Pk =
N−1∑
i=0

tk
i sin2 (ωti +ϕ) , (23.97)

Qk =
N−1∑
i=0

tk
i sin2 (ωti +ϕ+∆ϕ) . (23.98)

The inverse of the Fisher information matrix is

J−1 = σ2
n

⎛
⎜⎝

P2 + Q2 P1 + Q1 Q1

P1 + Q1 P0 + Q0 Q0

Q1 Q0 Q0

⎞
⎟⎠

−1

. (23.99)

As an example, a numerical simulation was per-
formed for the (true) parameters ω = 2, ϕ = 1.1,
∆ϕ = −0.8, fs = 10 and N = 256. The noise power
varied logarithmically in 25 steps from e−10 to e+10.
For each noise level 1000 independent realizations were
generated. The individual signals (Fig. 23.8a) were pro-
cessed by a maximum-likelihood estimation routine.
The Fisher information matrix and its inverse were
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calculated to be

J = 1

σ2
n

⎛
⎜⎝

55536 3261 1608

3261 258 128

1608 128 128

⎞
⎟⎠ , (23.100)

J−1 = σ2
n

⎛
⎜⎝

0.000070 −0.000894 0.000008

−0.000894 0.019063 −0.007794

0.000008 −0.007794 0.015536

⎞
⎟⎠ .

(23.101)

The results presented in Fig. 23.8b show that the
maximum-likelihood estimator meets the calculated
CRLB. Again, a threshold noise power can be seen for
the frequency estimate and the phase range is limited by
±π. Note that the CRLB and the empirically derived es-
timation variance of the phase ϕ and the phase difference
∆ϕ are different.

The expressions of the CRLB derived above are not
convenient for practical use in setting up a signal proces-
sor. Explicit expressions of the CRLB are required. To
derive these, a set of two orthogonal signals x and x̃ with
independent noise components n and ñ are considered.

xi = mi +ni , i = 0, 1, . . . , (N −1) , (23.102)

x̃i = m̃i + ñi , i = 0, 1, . . . , (N −1) , (23.103)

with

mi = A cos (ωti +ϕ) , i = 0, 1, . . . , (N −1) ,

(23.104)

m̃i = A sin (ωti +ϕ) , i = 0, 1, . . . , (N −1) ,

(23.105)

where additionally the amplitude A is unknown. The
joint probability density function becomes

p(x, x̃, a) =
(

1

2πσ2
n

)N

exp

{
− 1

2σ2
n

N−1∑
i=0

[
(xi −mi)

2

+ (x̃i − m̃i)
2
]}

(23.106)

and the elements of the Fisher information matrix are

Jij = 1

σ2
n

N−1∑
k=0

(
∂mk

∂ai

∂mk

∂a j
+ ∂m̃k

∂ai

∂m̃k

∂a j

)
. (23.107)

The vector of unknown parameters is

a =
⎛
⎜⎝

ω

ϕ

A

⎞
⎟⎠ . (23.108)

Using the fact that m2
i + m̃2

i = A2, the Fisher information
matrix can be expressed explicitly as

J = 1

σ2
n

⎛
⎜⎜⎜⎜⎜⎝

A2
N−1∑
i=0

t2
i A2

N−1∑
i=0

ti 0

A2
N−1∑
i=0

ti A2
N−1∑
i=0

1 0

0 0 N

⎞
⎟⎟⎟⎟⎟⎠

= A2

6σ2
n f 2

s

×

⎛
⎜⎝

N(N −1)(2N −1) 2N(N −1) fs 0

2N(N −1) fs 6N f 2
s 0

0 0 6N f 2
s

A2

⎞
⎟⎠ .

(23.109)

The zero elements in this matrix indicate that the am-
plitude can be estimated completely independent of
the frequency and the phase. Thus, the amplitude can
be presumed to be known without changing the lower
bounds of the frequency and phase estimator variance.
The inverse of the Fisher information matrix becomes

J−1 = 2σ2
n

A2 N2(N2 −1)

×

⎛
⎜⎝

6N f 2
s −3N(N −1) fs 0

−3N(N −1) fs N(N −1)(2N −1) 0

0 0 A2 N(N2−1)
2

⎞
⎟⎠

(23.110)

leading to the CRLB for the frequency

σ2
ω ≥ 12σ2

n f 2
s

A2 N(N2 −1)
. (23.111)

This is the CRLB for two signals with independent
noise components. For only one signal, the information
content is approximately one half, leading to

σ2
ω ≥ 24σ2

n f 2
s

A2 N(N2 −1)
. (23.112)

Using

SNR = A2

2σ2
n

, (23.113)

the CRLB for ω can be expressed as [23.17–19]

σ2
ω ≥ 12 f 2

s

N(N2 −1)SNR
, (23.114)

or, if ω = 2π f is used, this variance reduces to

σ2
f ≥ 3 f 2

s

π2 N(N2 −1)SNR
. (23.115)
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This expression was derived assuming that the noise
is spectrally white. Any filtering used to reduce the
signal noise violates this assumption and (23.115) no
longer strictly holds. Thus, while (band-pass) filtering
may improve the SNR, the estimator variance may not
be reduced.

For the case of phase Doppler signals, a second
signal pair is required.

xi = mx,i +nx,i mx,i = A cos(ωti +ϕ) ,

i = 0, 1, . . . , (N −1) , (23.116)

x̃i = m̃x,i + ñx,i m̃x,i = A sin(ωti +ϕ) ,

i = 0, 1, . . . , (N −1) , (23.117)

yi = my,i +ny,i my,i = A cos(ωti +ϕ+∆ϕ) ,

i = 0, 1, . . . , (N −1) , (23.118)

ỹi = m̃y,i + ñ y,i m̃ y,i = A sin(ωti +ϕ+∆ϕ) ,

i = 0, 1, . . . , (N −1) . (23.119)

The joint probability density function becomes

p(x, x̃, y, ỹ, a) =
(

1

2πσ2
n

)2N

exp

(
− 1

2σ2
n

N−1∑
i=0

[(
xi −mx,i

)2 + (x̃i − m̃x,i
)2

+ (yi −my,i
)2 + (ỹi − m̃y,i

)2])
(23.120)

and the elements of the Fisher information matrix are

Jij = 1

σ2
n

N−1∑
k=0

(
∂mx,k

∂ai

∂mx,k

∂a j
+ ∂m̃x,k

∂ai

∂m̃x,k

∂a j

+∂my,k

∂ai

∂my,k

∂a j
+ ∂m̃y,k

∂ai

∂m̃y,k

∂a j

)
. (23.121)

The vector of unknown parameters is

a =

⎛
⎜⎜⎜⎝

ω

ϕ

∆ϕ

A

⎞
⎟⎟⎟⎠ . (23.122)

The Fisher information matrix becomes

J = 1

σ2
n

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2A2
N−1∑
i=0

t2
i 2A2

N−1∑
i=0

ti A2
N−1∑
i=0

ti 0

2A2
N−1∑
i=0

ti 2A2
N−1∑
i=0

1 A2
N−1∑
i=0

1 0

A2
N−1∑
i=0

ti A2
N−1∑
i=0

1 A2
N−1∑
i=0

1 0

0 0 0 2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(23.123)

J = A2

6σ2
n f 2

s

×

⎛
⎜⎜⎜⎜⎝

2N(N−1)
×(2N−1)

6N
×(N−1) fs

3N
×(N−1) fs

0

6N(N −1) fs 12N f 2
s 6N f 2

s 0

3N(N −1) fs 6N f 2
s 6N f 2

s 0

0 0 0 12N f 2
s

A2

⎞
⎟⎟⎟⎟⎠ .

(23.124)

The inverse of the Fisher information matrix is

J−1 = σ2
n

2A2 N

⎛
⎜⎜⎜⎜⎝

12 f 2
s

N2−1
− 6 fs

N+1 0 0

− 6 f
N+1

5N−1
N+1 −2 0

0 −2 4 0

0 0 0 A2

⎞
⎟⎟⎟⎟⎠ (23.125)

leading to the following CRLBs [23.20]

σ2
ω ≥ 6σ2

n f 2
s

A2 N(N2 −1)
, (23.126)

σ2
ϕ ≥ σ2

n (5N −1)

2A2 N(N +1)
, (23.127)

σ2
∆ϕ ≥ 2σ2

n

A2 N
. (23.128)

Note that these are the lower bounds for the four sig-
nals with independent noise components. If only the two
phase Doppler signals are given, then the information
content is one half and the bounds become

σ2
ω ≥ 12σ2

n f 2
s

A2 N(N2 −1)
= 6 f 2

s

N(N2 −1)SNR
,

(23.129)

σ2
ϕ ≥ σ2

n (5N −1)

A2 N(N +1)
= 5N −1

2N(N +1)SNR
, (23.130)

σ2
∆ϕ ≥ 4σ2

n

A2 N
= 2

NSNR
. (23.131)

The CRLB is exactly half of the value for a Doppler
signal, since the frequency information content in the
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Fig. 23.9 Variance of the maximum-likelihood estimator,
normalized by the noise power for phase and phase dif-
ference. Comparison to the respective CRLBs (Simulation
parameters as used in Fig. 23.8)

two phase Doppler signals is twice as large. The CRLB
for the phase difference between the two phase Doppler
signals is lower than that for the absolute phase by
a factor of 0.8, for large N . This can be seen in
Fig. 23.9, which presents the estimator variance results
from Fig. 23.8b, normalized by the noise power.

All of the above derivations were based on a signal
model of constant amplitude. In fact, laser Doppler and
phase Doppler signals exhibit an amplitude described
by a Gaussian envelope and for this case, the derivation
of CRLB is somewhat more tedious. Results for the
frequency, amplitude, arrival time and residence time
are presented by Høst-Madsen and Gjelstrup [23.21].

23.5.2 Particle Imaging

The task of deriving the two-dimensional position from
images of small particles is addressed. For simplifica-
tion, a sampled two-dimensional Gaussian function

z(x, y) = A exp
{
−η

[
(x − ξ)2 + (y −ψ)2

]}
(23.132)

with the particle position [ξ, ψ], the maximum inten-
sity amplitude A and the parameter η, defining the
width of the particle image, is used for the intensity
profile of the particle image. The originally continuous
intensity profile is given at discrete positions (pixels)
zij . For simplicity, an ideas sampling is assumed with
zij = z(xi , y j ).

To derive the particle position from its sampled
image, several methods can be applied such as the cen-
troid method or a Gaussian fit. For the given condition

with a sampled Gaussian intensity profile, the centroid
method is biased while the Gaussian fit is bias-free.
However, all methods are affected by noise.

Assuming a Poisson-distributed fluctuation of the
intensity values due to the photon noise as in Wernet
and Pline [23.22], the elements of the Fisher information
matrix become

Jij =
∑

k

∑
l

1

zkl

∂zkl

∂ai

∂zkl

∂a j
. (23.133)

Note that the limits of the sums are not given here.
A summation over all pixels that contribute to the par-
ticle image is assumed. Since the particle images are
usually much smaller then the dimensions of the ob-
served imaging area, the limits of the sums can be
dropped off as long as the particle images do not overlap.
The parameter vector is given by

a =

⎛
⎜⎜⎜⎝

A

η

ξ

ψ

⎞
⎟⎟⎟⎠ . (23.134)

The element Jξξ of the Fisher information matrix then
becomes

Jξξ =
∑

k

∑
l

1

zkl

(
∂zkl

∂ξ

)2

=
∑

k

∑
l

zkl[−2η(xk − ξ)]2

=
∑

k

∑
l

4Aη2(xk − ξ)2 exp{−η[(xk − ξ)2

+ (yl −ψ)2]} . (23.135)

A separation in two sums yields

Jξξ = 4Aη2

{∑
k

(xk − ξ)2 exp
[
−η(xk − ξ)2

]
∣∣∣∣∣
∑

l

exp
[
−η(yl −ψ)2

]}
. (23.136)

Approximating the sums by integrals yields

Jξξ = 4Aη2

∆x∆y

{∫
(x − ξ)2 exp

[
−η(x − ξ)2

]
dx

∣∣∣∣
∫

exp
[
−η(y −ψ)2

]
dy

}
(23.137)

with the sampling intervals ∆x and ∆y, which are one
pixel (∆x = ∆y ≡ 1). Assuming furthermore an un-
bounded particle image and therefore integrals within
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the range [−∞,∞], the first integral becomes
√

π/(4η3)
and the second

√
π/η, yielding

Jξξ = 2π A . (23.138)

Assuming that the parameters of the parameter vector
a can be estimated independently, the appropriate ele-
ment of the inverse Fisher information matrix can be
approximated by(

J−1
)

ξξ
≈ (

Jξξ

)−1 = 1

2π A
(23.139)

and finally the CRLB for estimating the component ξ of
the particle position in the x-direction becomes

σ2
ξ ≥ 1

2π A
. (23.140)

Similarly, for estimating the component ψ of the particle
position in the y-direction is

σ2
ψ ≥ 1

2π A
. (23.141)

In Fig. 23.10 the estimation variances are shown for
the centroid method, the Gaussian fit and an alternative
maximum-likelihood estimator (MLE), obtained empir-
ically based on a computer simulation. The deviations of
the two estimated components ξ̂ and ψ̂ from the correct
values ξ and ψ are combined to a common deviation√

(ξ̂ − ξ)2 + (ψ̂ −ψ)2 (23.142)

as well as the CRLB

σ2
ξ +σ2

ψ ≥ 1

π A
. (23.143)
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Fig. 23.10 CRLB for the position estimation of particle
images for Poisson-distributed noise

As expected the MLE obviously meets the CRLB, while
the Gaussian fit has a significantly larger estimation vari-
ance. This is a result of the different image information
used for the two estimators. While the MLE uses the
entire particle image for its position estimation, the po-
sition estimate of the Gaussian fit is based only on the
nine central pixels of the particle image. However, ex-
tending the number of pixels to be used for the fit is not
useful. On the one hand this would reduce the estima-
tion variance. But on the other hand, systematic errors
due to overlaps of particles images would increase.

Compared to those both estimators, the centroid
method is dominated by systematic errors for large num-
bers of photons (low noise). However, for small number
of photons (high noise) the centroid method is more
robust then the Gaussian fit.

Due to the common use of powerful pulsed lasers
the accuracy of the position estimation is nowadays not
limited by the number of photons but by thermal noise
and the discrete gray values of the images. Both can
be approximated by Gaussian-distributed noise [23.23].
For a Gaussian-distributed noise with the variance σ2

n
the elements of the Fisher information matrix become

Jij = 1

σ2
n

∑
k

∑
l

∂zkl

∂ai

∂zkl

∂a j
. (23.144)

The element Jξξ of the Fisher information matrix then
becomes

Jξξ = 1

σ2
n

∑
k

∑
l

(
∂zkl

∂ξ

)2

= 1

σ2
n

∑
k

∑
l

z2
kl[−2η(xk − ξ)]2

= 1

σ2
n

∑
k

∑
l

4A2η2(xk − ξ)2 exp{−2η[(xk − ξ)2

+ (yl −ψ)2]} . (23.145)

A separation in two sums yields

Jξξ = 4A2η2

σ2
n

{∑
k

(xk − ξ)2 exp
[
−2η(xk − ξ)2

]

×

∣∣∣∣∣
∑

l

exp
[
−2η(yl −ψ)2

]}
. (23.146)

Approximating the sums by integrals yields

Jξξ = 4A2η2

σ2
n ∆x∆y

{∫
(x − ξ)2 exp

[
−2η(x − ξ)2

]
dx

×

∣∣∣∣
∫

exp
[
−2η(y −ψ)2

]
dy

}
(23.147)
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with the sampling intervals ∆x and ∆y, which again
are 1 pixel (∆x = ∆y ≡ 1). Assuming an unbounded
particle image and therefore integrals within the range
[−∞,∞], the first integral becomes

√
π/(32η3) and the

second
√

π/(2η), yielding

Jξξ = π A2

2σ2
n

(23.148)

Assuming that the parameters of the parameter vector
a can be estimated independently, the appropriate ele-
ment of the inverse Fisher information matrix can be
approximated by

(
J−1

)
ξξ

≈ (
Jξξ

)−1 = 2σ2
n

π A2 (23.149)

and finally, the CRLB for estimating the component ξ

of the particle position in the x-direction becomes

σ2
ξ ≥ 2σ2

n

π A2 . (23.150)

Similarly, for estimating the component ψ of the particle
position in the y-direction is

σ2
ψ ≥ 2σ2

n

π A2 . (23.151)
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Fig. 23.11 CRLB for the position estimation of particle
images for Gaussian-distributed noise

In Fig. 23.11 the results of the computer simulation are
shown for Gaussian-distributed noise. The MLE again
meets the CRLB, while the Gaussian fit has a larger esti-
mation variance due to the reduced information used for
the estimation procedure. The centroid method again
is limited by systematic errors for low noise levels,
but is more robust than the Gaussian fit for high noise
levels.

23.6 Propagation of Errors

The concepts of stochastic and systematic errors for
a given measurement quantity have already been intro-
duced in (23.26) and (23.27), respectively. If a derived
quantity y depends on several individual measurement
quantities xi , the question arises as to the measurement
error in y

y = f (x1, x2, . . . , xn) . (23.152)

The propagation of errors from the quantities xi to y
is treated separately for systematic and stochastic errors.

The resulting systematic error in y is found by using
a first-order Taylor expansion

δy = ∂ f

∂x1
δx1 + ∂ f

∂x2
δx2 + . . .+ ∂ f

∂xn
δxn , (23.153)

where δxi are the systematic errors for each measure-
ment quantity xi and δy is the overall systematic error.

Note that all δxi quantities are signed and, as such,
systematic errors may be compensating in nature.

Stochastic errors are treated in the mean square,
leading to the relation

σy=
√(

∂ f

∂x1
σx1

)2

+
(

∂ f

∂x2
σx2

)2

+. . .+
(

∂ f

∂xn
σxn

)2

(23.154)

where the individual estimator variances σ2
xi

have
been evaluated using techniques described in the pre-
vious section. This formula assumes that all of the
individual stochastic errors are normally distributed
and that the standard deviations are all evaluated
with the same confidence intervals. An extensive
discussion of error propagation can be found in
Kline and McClintock [23.3], Kline [23.4] and Moffat
[23.5].
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