14. Flow Measurement Techniques in Turbomachinery

This chapter focuses on measurement tech-
niques that have been used during experimental
investigations of turbomachinery flow fields.
These techniques are not fundamentally dif-
ferent from those used in other external
flow studies. However, implementing them
within turbomachines has introduced a se-
ries of unique and specialized issues in the
preparation of the experimental setup, data
acquisition, and analysis procedures. This
chapter provides detailed information on the
methods used to address these issues, along
with a comprehensive summary on how they
have been implemented to investigate com-
plex flow phenomena within turbomachinery
components.
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14.1 Background On Turbomachinery Flows

Turbomachines constitute a large and diverse class of de-
vices, which are used to transfer energy either to or from
a flowing stream of fluid by the dynamic action of one or
more moving blade rows. They have found a wide range
of applications in many engineering systems such as:

1. compressors and turbines in gas turbine engines used

for power generation, propulsion of aircraft power,

plants for naval surface ships, hydrofoil boats and

hovercraft

propellers and rotors used in marine and aircraft

propulsion

gas turbines and turbochargers used in land vehicles

steam turbines used in power plants

hydraulic turbines used in hydroelectric power plants

wind turbines

pumps used for transport of liquids, especially wa-

ter, in a wide range of industrial, agricultural and

residential applications

compressors used in industrial processes

9. pumps used in medical applications, e.g., in heart-
assist devices

N

Nownkw

o

10. turbines and pumps used in liquid-fuel rocket en-
gines
11. automotive torque converters, and many others.

Many books have already been published on the the-
ory and applications of turbomachinery, and the reader
should refer to them for guidance on design and anal-
ysis of components, and for information on associated
fluid-mechanics and heat-transfer problems [14.1-8].
The complex flow fields within turbomachines are
three-dimensional, turbulent, and inherently unsteady.
Dominant unsteady phenomena occur due to the interac-
tions of moving and stationary blades with nonuniform
flow fields generated by upstream blades. For example,
upstream wakes modulate the performance and mod-
ify the boundary layers on the blades, and in turn are
chopped, strained, and the turbulence within them is
modified as they pass through a rotor passage. De-
pending on applications, the boundary layers on blades
range from the laminar to transitional and turbulent
regimes. The associated flow fields are highly compress-
ible within gas turbines, but often involve two phases
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Flow Measurement Techniques in Turbomachinery

14.2 Non-Optical Measurement Techniques

within pumps, inducers, hydroelectric turbines, and ship
propellers. These complex flow phenomena affect the
performance, efficiency, and range of operating con-
ditions of these machines, as well as cause undesired
phenomena, such as noise, vibrations, stall, and some-
times failure. Understanding of the flow dynamics and
its effect on performance are essential for the develop-
ment of more-efficient, reliable and quieter machines,
as well as for developing physically meaningful and ac-
curate prediction tools that can be incorporated into the
design process. Such insight requires detailed experi-
mental data on the mean and fluctuating components
of the flow, pressure, and temperature, as well as on
the resulting power, forces, torques, and vibrations. In
this chapter we confine ourselves to flow and pressure
measurements.

Numerous experimental studies have already investi-
gated various aspects of the flow within turbomachinery
over the years. These investigations have examined var-
ious three-dimensional, unsteady, and turbulent flow
structures involving, e.g., blade—wake and wake—wake
interactions, wake—boundary layer interactions, the

characteristics of curved rotor wake, the structure of
turbulence and deterministic stresses, secondary flows,
tip vortices and tip clearance flows, rotating stall and
surge, shock waves and related unsteady phenomena,
wake—shock interaction, rotor—stator clocking, mixing,
cavitation, and many other topics. For measuring veloc-
ity and turbulence, these studies have used hot-wire/film
anemometry, laser Doppler velocimetry (LDV), laser
two-focus velocimetry (L2F) and particle image ve-
locimetry (PIV). Pressure measurements have been
performed using a variety of Pitot tubes including three-,
four-, five-, and seven-hole probes, surface and probe-
mounted pressure transducers, and pressure-sensitive
paint (PSP), the latter for mapping the instantaneous
pressure distribution over surfaces. This chapter summa-
rizes the applications of these techniques and discusses
issues that are specific to turbomachines. In addition to
summaries, a series of tables provide examples of ap-
plications of the various measurement techniques. Each
table is dedicated to a different class of sensors and
contains a brief description of objectives and type of
machine involved.

14.2 Non-Optical Measurement Techniques

This category includes a variety of probes, such as single
or multisensor hot-wire/film anemometers; five-hole or
other types of Pitot probes and high-frequency-response
pressure transducers; measurements of static pressure,
wall shear stress, and surface flow visualization on
blade surfaces. Although not different from those used
in other aero/hydrodynamic applications, their imple-
mentation in turbomachinery investigations introduces
unique issues:

1. Acquisition of data in a rotating reference frame
requires complex probe traverse mechanisms and
data transmission systems.

2. The flow structure is inherently unsteady with
contributions from periodic variations due to the
relative alignment between rotor and stator blades,
large-scale instabilities occurring below the de-

Fig.14.1a=d Two sample rotating-frame traverse mech-
anisms: (a) Lakshminarayana [14.9] and (b) Chaluvadi
et al. [14.10]; and examples of rotating-to-stationary frame
data-transfer devices: () pneumatic pressure-transfer de-
vice, Lakshminarayana [14.9], and (d) mercury slip-ring
unit, Lakshminarayana [14.9] <

sign conditions such as stall and surge, as well as
turbulence. Special data-acquisition and averaging
procedures are needed to distinguish between these
contributors in order to distinguish between them.

14.2.1 Data-Acquisition Techniques

Rotating Frame of Reference
Measurements in a rotating frame of reference require
mechanisms for traversing probes in tangential, radial,
axial, and null (probe aligned in the direction of the flow)
directions. They also require means of data transmission
from rotating to stationary frames, such as mercury or
brush slip-ring units, pneumatic pressure-transfer de-
vices, and wireless telemetry systems. In one of the
earliest studies, Weske [14.11] measured pressure dis-
tributions on a rotor blade surface and traversed a Pitot
probe across a rotor blade wake. He used a pulley-
and-lever traverse mechanism as well as a selector
switch and seal pressure-transmission system. Gorton
and Lakshminarayana [14.12] used a three-sensor hot-
wire to measure all three components of the mean
velocity and turbulent stresses in a rotating frame of
reference within a three-bladed rocket pump inducer
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Hot-wire/film

Author(s) Year Sensor type

Lakshminarayana and Poncet [14.16] 1974  Hot-wire (X and single
Sensor)

Gorton and Lakshminarayana [14.12] 1976  Hot-wire (three sensor)

Hah and Lakshminarayana [14.17] 1980  Hot-wire (three sensor)

Lakshminarayana et al. [14.18] 1982  Hot-wire (three sensor)

Dong and Cumpsty [14.19] 1990  Hot-wire (single and
dual sensor)

Hodson et al. [14.20] 1994  Hot-film (surface
mounted)

Camp and Shin [14.21] 1995  Hot-wire, hot-film
(single sensor)

Witkowski et al. [14.22] 1996  Hot-film (triple split)

Halstead et al. [14.23] 1997  Hot-wire, hot-film
(surface mounted),
X hot-film probes

Hsu and Wo [14.24] 1997  Hot-wire (slanted)

Sentker and Riess [14.25] 1998  Split hot-film

Ristic and Lakshminarayana [14.26] 1998 X Hot-wire

Prato et al. [14.27] 1998  Slanted hot-film

Furukawa et al. [14.28] 1998  Hot-wire

Sentker and Riess [14.29] 2000  Split hot-film

Velarde-Suarez et al. [14.30] 2001  Hot-wire (dual sensor)

Shin et al. [14.31] 2003  Hot-wire

Table14.1 Sample studies that have used hot-wire/film anemometry technique in investigating different aspects of turbomachinery
flow fields. (S: stationary frame measurement, R: rotating frame measurement)

Type of machine Subject of study Ref. frame

Axial flow inducer Rotor wakes S

Axial inducer Mean flow and R
turbulence

Axial compressor Effect of feestream S
turbulence on a rotor wake

Axial fan Effects of rotation and S
blade incidence on
rotor wake

Compressor cascade ~ Boundary layer S

with upstream rods

Low pressure Unsteady boundary layer S

turbine

Axial compressor Turbulence intensity and S
length scale

Axial compressor 3-D wake decay and S
secondary flows

Axial compressor Unsteady boundary layer Rand S

and turbine

Axial compressor Unsteady wake S

Axial compressor Turbulence and S
unsteadiness

Axial turbine 3-D boundary layer S

Axial compressor Unsteady 3-D flow field S

Diagonal flow rotor  Tip flow field S

Axial compressor Wake-blade interaction S

Centrifugal fan Unsteady flow S

Axial compressor Blade boundary layers S

passage operating in air. They did not have a rotating
traverse system, and the probe was positioned manually
while the inducer was not running. A rotating-probe
traverse system, illustrated in Fig. 14.1a, was used by
Reynolds et al. [14.13] to investigate the near wake
of a rotor blade of an axial flow research fan. As
described in detail in Lakshminarayana [14.9], this
mechanism was mounted immediately downstream of
the rotor, and allowed null and tangential traverse of
a three-sensor hot-wire probe and a spherical head static
pressure probe, while the rotor was in operation. Move-
ments in the axial and radial directions could only
be achieved manually, while the rotor was stationary.
Dring and Joslyn [14.14] and Joslyn and Dring [14.15]
reported measurements in the rotating frame of refer-

ence within an axial turbine facility. Their probes could
be traversed along the tangential and radial directions
while the machine was rotating. Recently, Chaluvadi
et al. [14.10] used the rotating traverse mechanism
shown in Fig. 14.1b, in a high-pressure turbine facil-
ity. This three-axis relative frame traverse mechanism
had a computer-controlled stepper motor system, which
allowed measurements within and at the exit of the rotor
blade row.

To transmit and then measure pressure generated
in the rotating frame to a stationary manometer or
a transducer, early studies used pneumatic pressure-
transfer devices, as shown in Fig. 14.1¢ [14.9]. The most
common method to transmit data from embedded high-
frequency pressure sensors or hot-wire signals has been
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Table14.2 Sample studies that have used various types of Pitot pressure probes in investigating different aspects of
turbomachinery flow fields. (S: stationary frame measurement, R: rotating frame measurement)

Pitot pressure probe

Author(s) Year  Sensor type Type of machine Subject of study Ref. frame
Weske [14.11] 1947 Pitot probe, surface pressure  Axial rotor rotor wake, surface R
pressure distribution
Neustein [14.38] 1964  Total pressure probes Axial pump Flow structure S
Dring and Joslyn [14.14] 1981 Total pressure probes (Kiel)  Axial turbine 3-D flow structure R
Joslyn and Dring [14.15] 1992 Five-hole probe, surface Axial turbine 3-D flow structure R
pressures
Kang and Hirsch [14.39] 1993  Five-hole probe, flow viz. Compressor cascade Tip clearance effects S
Carrotte et al. [14.40] 1995 Five-hole probe Axial compressor OGV flow field S
Prato et al. [14.41] 1997  Five-hole probe Axial compressor Mean stator flow structure S
Doukelis [14.42] 1998  Five-hole probe Compressor cascade Tip clearance effects S
(annular)
Ivey and Swoboda [14.43] 1998  Three-hole cobra probe, axial compressor Tip leakage effects R
LDV
Dey and Camci [14.44] 2000  Five-hole probe Axial turbine Tip clearance flow with R
coolant ejection
Xiao et al. [14.45] 2001 Five-hole probe, surface Axial turbine Tip clearance flow and R
pressures losses
McLean et al. [14.46,47] 2001 Five-hole probe, Kiel probe  Axial turbine Effects on coolant injection Rand S
at upstream hub
McCarter et al. [14.48] 2001 Five-hole probe, LDV Axial turbine Tip clearance flow and R
losses
Coldrick et al. [14.49] 2003  Four-hole probe Axial compressor 3-D flow structure S
Pullan et al. [14.50] 2003 Five-hole probe Axial turbine Secondary flows S
Gilarranz et al. [14.51] 2005 Five-hole probe Centrifugal compressor ~ Flow structure S

to use brush-type or mercury slip-rings. Figure 14.1d
shows an earlier version of a two-channel mercury slip-
ring [14.9]. Currently, a 150-channel brush-type system
is being used at the axial flow turbine research facility
(AFTREF) at the Pennsylvania State University [14.32].
Both brush and mercury slip rings are available com-
mercially. Wireless telemetry systems also exist, but
their implementation for unsteady pressure and velocity
measurements has been rare, mostly due to their limited
frequency response, which will most likely change in
the future. Nevertheless, analog wireless telemetry was
used in early measurements of rotor blade fluctuating
and mean surface pressures [14.33,34]. They also have
been used to obtain temperature and strain data in real
gas turbine engines [14.35-37]. A recently introduced
digital wireless telemetry built for a high-pressure com-
pressor rig [14.37] allowed simultaneous measurements
in up to 48 channels with a bandwidth of 50 kHz. The
analog version of this system supported 12 channels
with a bandwidth of 30kHz. The electrical power for

both systems was supplied using a contactless induction
coil.

Recent examples of measurements in a rotating
frame include investigations of the tip flow field of
a turbine blade with coolant ejection [14.44]; of tip
clearance effects in an axial flow turbine [14.45,48] and
in an axial flow compressor [14.43]; of blade-to-blade
wake variability by Boyd and Fleeter [14.52]; and of
blade row—wake and vortex interactions by Chaluvadi
etal. [14.10], [14.53]. A more-comprehensive list of ref-
erences is presented in Tables 14.1-14.4, where R in the
last column indicates that the data have been acquired in
the rotating frame of reference.

Stationary Frame of Reference
Most of the experimental data have been obtained in
a stationary frame of reference. Consequently, they
require specialized phase-locked ensemble-averaging
procedures during data analysis to distinguish between
periodic and turbulent fluctuations [14.9, 16]. This ap-
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Table14.3 Sample studies that have used high-frequency-response pressure sensors in investigating different aspects of turboma-
chinery flow fields. (S: stationary frame measurement, R: rotating frame measurement)

High-frequency response (HFR) pressure sensors

Author(s) Year  Sensor type

Kerrebrock et al. [14.54] 1980  Spherical HFR-pressure probe

Cousins et al. [14.55] 1981 HFR-pressure transducers
(on rotors)

Giannissis et al. [14.56] 1989 HFR-pressure transducers

Cherrett and Bryce [14.57] 1992  HFR-pressure probe

Ainsworth et al. [14.58] 1995  HFR-pressure probe

Fabian and Jumper [14.59] 1995  HFR-pressure transducers
(surface)

Laborde et al. [14.60] 1997 HFR-pressure transducer on
wall, flow viz.

Dong et al. [14.61] 1998 HER five-hole probe

Roduner et al. [14.62] 1999  HFR-pressure probe

Kost et al. [14.63] 2000  HFR-pressure sensor (surface)

Mailach et al. [14.64] 2001 HFR-pressure transducer
(surface)

Tiedemann and Kost [14.65] 2001  HFR-pressure probes , L2F

Lohrberg et al. [14.66] 2002  HFR-pressure transducers

Nohmi et al. [14.67] 2003 HFR-pressure transducer
(on wall and blade)

Leger et al. [14.68] 2004  HFR-pressure sensor
(flexible and on surface)

Spakovszky [14.69] 2004  HFR-pressure transducer
(on wall)

Schleer et al. [14.70] 2004  HFR-pressure probe

Camciet al. [14.71] 2005  HFR-pressure probe

Type of machine Subject of study Ref. frame
Axial compressor Flow structure S
Axial compressor Rotating stall R
Axial compressor Rotating stall S
Axial compressor Rotor—rotor S
interactions, wakes
and secondary flows
Axial turbine Unsteady flow S
Axial compressor Unsteady pressure S
transonic cascade with  distributions
upstream rods
Axial pump Tip vortex cavitation S
Automotive torque Unsteady flow S
converter
Centrifugal compressor  Impeller exit flow S
Axial turbine Unsteady flow S
Axial compressor Rotating instabilities R
Axial turbine Effect of clocking S
on wake—wake
interactions
Hydrofoil cascade Cavitation S
Centrifugal pump Cavitation R
Axial compressor Unsteady loading S
Centrifugal compressor ~ Rotating stall S
Centrifugal compressor ~ Flow structure S

Axial turbine

Effect of tip geometry
on tip leakage flows

proach consists of conditionally sampling a time series
of data obtained over many revolutions based on the
phase or orientation of a rotor blade. A signal from
a shaft encoder is typically used for synchronizing the
sensor time series with the phase of the machine. For data
recorded over N revolutions, the phase- or ensemble-
averaged value of a certain flow variable ¢ at time or
phase #,, in a revolution is

1 N
Pltm) =~ gwn(t,n>,

where ¢ is the instantaneous value, e.g., of the velocity,
pressure or temperature, and 7 an index indicating a cer-
tain period/cycle. The turbulent fluctuations are defined
as the difference between the ensemble-averaged value
and the instantaneous value

(p;,(tm) = On(tm) — @(tm) -
If the number of samples per period is M, the time-
averaged value is

m

@Z%Z‘Z(tm)-

m=1
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Table14.4 Sample studies that have used a combination of hot-wire/film anemometry, Pitot pressure probes and high-frequency-
response pressure sensors in investigating different aspects of turbomachinery flow fields. (S: stationary frame measurement, R:
rotating frame measurement)

Multiple sensors (hot-wire/film), Pitot and high-frequency pressure sensor

Author(s)
Lockhart and Walker [14.72]

Greitzer [14.73]

Reynolds et al. [14.13]
Gregory-Smith

and Cleak [14.74]

Day [14.75]

Kim and Fleeter [14.76]
Gallus et al. [14.77]
Chaluvadi et al. [14.10]
Reinmoller et al. [14.78]
Sanders and Fleeter [14.79]
Johnston and Fleeter [14.80]

Boyd and Fleeter [14.52]

Schobeiri et al. [14.81]

Chaluvadi et al. [14.53]

Johnston and Fleeter [14.82]

Figure 14.2a shows a sample signal from tri-
axial hot-wire measurements, taken from Lakshmi-
narayana [14.9], and illustrates the methodology
described above to calculate the ensemble-averaged and
the turbulence parameters using a continuous data time
series. This approach has been widely used during anal-
ysis of hot-wire/film and pressure probe signals to study
various aspects of the flow field behind rotating blade
rows. Some sample references are listed in Tables 14.1—
14.4, and a sample application is presented in Fig. 14.2b,
showing the velocity traces obtained using a hot-wire

Year
1974

1976

1979

1992

1994

1994

1994

2001

2002

2002

2002

2003

2003

2004

2004

Sensor type
Hot-wire (single sensor) pressure

probe  (three-hole
yawmeter)
Hot-wire, HFR-pressure probe

Conrad-type

Hot-wire (three sensor), pressure
probe (spherical head)
X hot-wire, five-hole probe

Hot-wire, HFR-pressure probe

X hot-wire, HFR-pressure transducer

Hot-wire, pressure probe (wake and
blade surface)

Hot-wire (three sensor), five-hole,
three-hole and Kiel probes

Hot-wire (three-sensor), five-hole
probe

X hot-film, HFR-pressure probe and
surface transducers

Hot-film, HFR-pressure probe

Hot-wire, surface pressure (HFR)

Hot-wire (single), surface pressure

Hot-wire (three sensor), five-hole

probe
Hot-film, HFR-pressure probe

Type of machine

Axial compressor

Axial compressor
Axial fan

Axial turbine
cascade

Axial compressor
Axial compressor
Axial turbine
Axial turbine
Axial turbine
Axial compressor
Axial compressor
Axial compressor
Low-pressure
turbine cascade
with upstream rods
Axial steam

turbine

Axial fan

Subject of study
Blade/wake

interactions

Rotating stall and
surge
Rotor wakes

Secondary flows
with inlet turbulence
Rotating stall and
surge

Rotating stall and
surge

Secondary flows

Blade—-wake
interaction
Rotor—stator
clocking
Blade—wake inter-
action and clocking
Wake-blade
interaction
Blade-to-blade
wake variability
Unsteady boundary
layer

Blade row—vortex
interaction
IGV-rotor potential
field interaction

Ref. frame

S

S

Rand S

Rand S

Rand S

Rand S

anemometer, within a compressor cascade operating
downstream of a row of rotating cylindrical rods [14.19].

The so-called phase-locked averaging technique is
another variation of the phase-dependent data acquisi-
tion and averaging methods. In this approach, the sensor
is triggered based on a signal provided by the encoder
to acquire data during a short but finite time 37 at a fixed
phase of the revolution. Different phases can be sampled
by varying the delay between the shaft encoder pulse and
timing of data acquisition. After collecting data over N
cycles, the time delay is changed to obtain an average
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Fig.14.2a-c Stationary-frame data acquisition and reduction procedures for hot-wire signals. (a) The methodology to
calculate the ensemble-averaged data from continuous instantaneous time series, as explained in Lakshminarayana [14.9].
(b), (c) A sample application of the same measurement methodology in a compressor cascade experiment with upstream

rotating rods (after Dong and Cumpsty [14.19])

Fig.14.3a—f Examples of various hot-wire/film probes used in turbomachinery flow investigations. (a) Lakshminarayana
and Poncet [14.16), (b) Gorton and Lakshminarayana [14.12], (c) Witkowski et al. [14.22], (d) Sentker and Riess [14.25],

(e) Chaluvadi et al. [14.53]. (f) Surface mounted hot-film Hods

on et al. [14.20] »
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Fig.1&.4a,b Turbulence intensity contours measured using a three-sensor hot-wire behind (a) the stator and (b) the rotor
of a high-pressure axial-flow steam turbine stage, with upstream delta wings used to simulate the rotor passage vortex

(after Chaluvadi et al. [14.53])

at another phase of the rotor period. This procedure has
not been used as extensively, and the reader is referred
to Lakshminarayana [14.9] for background, and to Hsu
and Wo [14.24] for an example of implementation.

Camp and Shin [14.21] used another approach to fil-
ter out the periodic components of a signal, i.e., those
occurring at the blade-passing frequency. They used
a Fourier transform to obtain the spectrum of a signal and
zeroed the amplitude at the blade-passing frequency and
its harmonics. The filtered Fourier transform was then
transformed back into the time domain to obtain the tur-
bulent signal. The modulated spectrum was also used for
calculating the autocorrelation function directly from the
Fourier coefficients, which provided the turbulent length
scale. The authors claimed that these procedures were
computationally efficient, and required a comparatively
small amount of data. These advantages enabled them
to measure the turbulence in a large number of points
over a stator passage.

14.2.2 Non-Optical
Measurement Techniques

Hot-Wire/Film Anemometry
Due to their small size and high-frequency response,
hot-wire and hot-film anemometers have been used
extensively in investigations of turbomachinery flow
fields. Extensive background and technical information
on these techniques can be found in Bruun [14.86], Gold-

stein [14.87] and other chapters in this book. A hot-wire
probe consists of a short length (* 1 mm), fine-diameter
(5 pm or less) wire made of tungsten, platinum or plat-
inum alloys, which is attached to two prongs. Hot-film
sensors are thin (about 0.1 pm) platinum or nickel films
deposited on thermally insulating substrates (usually
quartz), which are typically shaped as cylinders, wedges
or cones. For surface measurements, hot-film sensors
can be glued to the wall. In cylindrical hot-film probes,
the active element is usually 25-70 wm in diameter
and 1-2mm long. Compared to hot-wire probes, the
hot-film probes have a more-rigid construction, are less
susceptible to contamination, and have more long-term
calibration stability. Consequently, they have a lower
frequency of breakage. However, it is more expensive
to replace them, they have a more-complex frequency
response, and their calibration may be affected by their
own vortex shedding [14.86].

Early investigations in turbomachinery flows us-
ing hot-wire/film probes were mostly qualitative
[14.72, 88, 89]. However, with the implementation of
rotating-frame measurement techniques as well as the

Fig.1t.5a—-e Sample Pitot pressure probes used in turbo-
machinery flow investigations: (a) five-hole probe Treaster
and Yocum [14.83], (b) disk-type boundary-layer probe
Sitaram et al. [14.84], (c) spherical head probe Sitaram
et al. [14.84], (d) four-hole probe Coldrick et al. [14.49]
and (e) seven-hole probe Gottlich et al. [14.85]»



Flow Measurement Techniques in Turbomachinery | 14.2 Non-Optical Measurement Techniques

a)

Flow direction

Reference

(o)}

3.175 diam. sphere
1.3 diam. tube _

O

Flow trips
7.6

0.6 diam. stagnation
pressure tube

4 static pressure
holes (0.4 diam.)

6.35 diam. threaded collar

1.6 diam. tubes

e)

Shock D

Angle-T

b) 6.35 diam. A 1.59 diam.

- 3 holes
19 r (0.8 diam.)

250 459 P,
6.35 - 1]
diam. 45° P
o 1]
Dﬂ

Enlarged view of
the head (3 times)

Epoxy filled
contour with 3
(0.8 diam.) tubes

0.8 diam.
tubes
d)
_ 3mm

rg € Ul

- A -~ Yaw plane 45°,
S3 Pl S2
" Pitch plane

Shock

Expansion wave

Conical shock

929

CHT [) Med



930 PartC | Specific Experimental Environments and Techniques

¢HT ) Med

a) Radial position (r/h)

= (L[

1.2 | pvpto: 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95 0.955 0.96

1.1

1
0.9
0.8
0.7
0.6
0.5

-0.25 0 0.25 0.5 0.75
Pichwise position (rg/h)

Fig.14.6a,b Sample data obtained using five-hole probes. (a) Pressure-loss contours and velocity vectors downstream
of an axial-flow turbine rotor. These measurements were performed in the rotating frame by Dey and Camci [14.44].
(b) Meridional yaw angle () contours at the exit of a nozzle guide vane, Pullan et al. [14.50]

stationary-frame acquisition and averaging methods, as
described above, substantial amounts of quantitative ex-
perimental data have been collected on various aspects
of the flow within turbomachines. Many different types
of hot-wire and hot-film probes have been used, in-
cluding single-, dual-, or triple-sensor hot-wire probes,
single-element or double/triple split hot-film probes, as
well as surface-mounted hot-film sensors for surface
shear stress measurements. Characteristic examples of
the types of probes used in investigating turbomachin-
ery flows are presented in Fig. 14.3. Figure 14.4 shows
sample turbulence intensity contours obtained within
a high-pressure axial flow steam turbine stage, using the
three-sensor hot-wire probe shown in Fig. 14.3e [14.53].
This specific test rig contained a stator row followed by
a rotor row. This study investigated the impact of the
upstream rotor passage vortex, which was simulated us-
ing delta-wing vortex generators located upstream of the
stator row, on the performance of the downstream blade
rows. Hot-wire measurements were performed in the sta-
tionary frame of reference and the ensemble-averaging
technique was used to obtain the spatial distribution
of turbulence intensity. Table 14.1 provides samples
of other applications of hot-wire/hot-film anemometry,
showing the types of probe and machine as well as
the main topic of investigation. Studies involving hot-
wire/hot-film measurements along with other sensors
are summarized in Table 14.4.

Pitot Pressure Probes
Figure 14.5 shows the characteristic configurations of
Pitot pressure probes that have been used in turboma-

chinery flow field investigations, and Tables 14.2 and
14.4 provide references for sample studies that have uti-
lized them. A classical reference on this topic is Sitaram
et al. [14.84]. Some sensors can only measure the total
pressure, such as the wedge, spherical and flat-nosed
pitot probes as well as the Kiel probe. The latter is
particularly suitable in situations where the flow direc-
tion is unknown. Other sensors can measure the total
and/or static pressure, such as the conventional Pitot-
static (Prandtl) probe and the spherical-head total-static
probe, which is insensitive to the flow direction. The
three-hole cobra probe, the three-hole Conrad yawmeter
probe and the five-hole probe are mostly used for mea-
suring the flow velocity vector in addition to the total and
static pressures. The thin three-hole disk-type probe can
be used for two-dimensional boundary-layer measure-
ments [14.84]. Most Pitot pressure probes inherently
have a low-frequency response. Therefore, they have
been used either for measurements in a rotating frame
of reference or in measurements within nonrotating inlet
guide vanes (IGV) and stator blade passages to obtain
the mean flow characteristics.

As suggested by Table 14.2, the five-hole probe
has been the most commonly used pressure probe.

Fig.14.7a-g Sample high-frequency-response pressure
probes and surface-mounted sensors used in turbomachin-
ery flow investigations: (a) Cherrett and Bryce [14.57].
(b) Ainsworth et al. [14.58]. (c) Kerrebrock et al. [14.54]
(d) Tiedemann and Kost [14.65]. (e) Gossweiler
et al. [14.90]. (f) Leger et al. [14.68]. (g) Ainsworth
etal. [14.91]»
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Fig.14.8a,b Sample high-frequency-response pressure probe measurement results (a) Py/P;, contours downstream of

an axial flow turbine rotor (Camci et al. [14.71]) and (b) to
a centrifugal compressor (Schleer et al. [14.70])

The five measured pressures are converted to the lo-
cal total and static pressures as well as the local
pitch and yaw angles of the velocity vector, based on
calibration. The local mean velocity magnitude is de-
termined from the measured total and static pressures.
The five-hole probe is sensitive to Reynolds number,
wall vicinity, blockage, and turbulence effects. De-
tailed information about calibration and data-acquisition
procedures for the five-hole probe can be found in
Treaster and Yocum [14.83], Lakshminarayana [14.9]
and Sitaram et al. [14.84]. Sample results of measure-
ments performed using five-hole probe are presented in
Fig. 14.6.

High-Frequency-Response Pressure Probes
and Sensors
High-frequency pressure probes and surface pressure
transducers have been used for measuring unsteady
pressure fluctuations in both rotating and stationary

tal pressure ration contours at the exit of the impeller of

frames of references. They typically have one or
more piezoresistive (i.e., a strain-gauge attached to
a diaphragm) or piezoelectric (piezoelectric crystal,
typically silicon) pressure sensors, that are installed
flush-mounted either within a probe or on a blade
surface. The natural frequency of these sensors can
extend to 150-400kHz. Comprehensive reviews on
applications of high-frequency pressure sensors to tur-
bomachinery flow fields can be found in Sieverding
etal. [14.92] and Ainsworth et al. [14.91]. Characteristic
samples are listed in Tables 14.3 and 14.4. Most studies
have utilized commercially available sensors produced
by, e.g., Kulite, Endevco, Entran, PCB, and several oth-
ers. Mounting of several sensors to a probe head to
measure the total and static pressure simultaneously
significantly increases the probe head size, although
miniature MEMS-based transducers mounted on the tip
of the probe have been introduced to remedy this prob-
lem [14.93]. Due to interference of the probe with the
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flow, Kupferschmied et al. [14.94] note that the meas-
ured pressures do not, in general, correspond to the total
or static pressure of the undisturbed flow, but may be
converted into them (and into flow angles and velocity)
by calibrations under well-controlled flow conditions.

Figure 14.7 shows several types of probes and sur-
face sensors that have been used in turbomachines, and
Fig. 14.8 presents sample results obtained in a stationary
reference frame analyzed using the ensemble-averaging
technique [14.70,71].

14.3 Optical Measurement Techniques

Optical measurement techniques are typically non-
intrusive, and can be implemented within rotating blade
passages without having to use rotating probes (although
rotating optical probes exist). The primary challenge in
applications of optical sensors is to provide appropri-
ate optical access to the flow field within the machine.
Laser Doppler velocimetry (LDV) and particle image
velocimetry (PIV) have been the most commonly used
techniques for measuring velocity and turbulence within
turbomachines. LDV has been widely in use since

Table14.5 Sample studies that have used laser Doppler velocimetry (LDV) technique in investigating different aspects of

the early 1970s, whereas PIV was introduced in the
late 1980s, but has become popular in turbomachinery
applications in the late 1990s. Another optical tech-
nique, laser two-focus velocimetry (L2F), has also been
used in several studies, but less frequently. Other tech-
niques, such as Doppler global velocimetry (DGV), are
still under development. All the aforementioned tech-
niques rely on measurements of the displacement of
seed particles. In applications involving airflow, where
the particles cannot be neutrally buoyant, they must

turbomachinery flow fields. (S: stationary frame measurement, R: rotating frame measurement)

Laser Doppler velocimetry (LDV)

Ref. frame

Author(s) Year Type Type of machine Subject of study

Wisler and Mossey [14.95] 1973  1-D Axial compressor Relative flow field S
Strazisar [14.96] 1985 1-D Axial fan rotor Transonic flow structure S
Pierzga and Wood [14.97] 1985 1-D Axial fan rotor 3-D flow field S
Murthy and Lakshminarayana [14.98] 1986 1-D Axial compressor Tip flow field S
Beaudoin et al. [14.99] 1992 2-D Centrifugal pump Effects of orbiting impeller S
Stauter [14.100] 1993 3-D Axial compressor Tip flow field S
Hathaway et al. [14.101] 1993  3-D Centrifugal compressor 3-D flow structure S
Farrell and Billet [14.102] 1994 - Axial pump Tip vortex cavitation S
Abramian and Howard [14.103] 1994 1-D Centrifugal impeller Unsteady flow R
Fagan and Fleeter [14.104] 1994 1-D Centrifugal compressor Flow Structure S
Hobson et al. [14.105] 1996 2-D Axial compressor cascade  Effect of inlet turbulence S
Zaccaria and Lakshminarayana [14.106] 1997 2-D Axial turbine ‘Wake/blade interaction S
Adler and Benyamin [14.107] 1999 2-D Axial turbine Stator wake transport S
Ristic et al. [14.108] 1999 3-D Axial turbine 3-D flow field S
Kang and Thole [14.109] 2000 3-D Axial turbine cascade Endwall flow structure S
Faure et al. [14.110] 2001 2-D Axial compressor Flow Structure S
McCarter et al. [14.48] 2001 3-D Axial turbine Tip clearance effects S
VanZante et al. [14.111] 2002 2-D Axial compressor Blade/row interaction S
Woisetschlager et al. [14.112] 2002 2-D Axial turbine cascade Turbine blade wakes S
Xiao and Lakshminarayana [14.113] 2002 3-D Axial turbine Endwall flow structure S
Matsunuma and Tsutsui [14.114] 2003 2-D Axial turbine Unsteady flow S
Ibaraki et al. [14.115] 2003 2-D Centrifugal compressor Transonic flow structure S
Gottlich et al. [14.85] 2004 2-D Axial turbine Stator—rotor interaction S
Faure et al. [14.116] 2004  3-D Axial compressor 3-D flow and turbulence structure S
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be kept small enough to follow the fluid motion, es-
pecially in areas with very high pressure gradients,
such as in shock waves. Consequently, the typical par-
ticle size should be around 0.5 pm to obtain a tolerable
velocity lag. In applications involving liquid, the spe-
cific gravity of the particle can be better matched
with that of the fluid, and significantly larger particles,
in the order of 5—-20 wm can be tolerated, depending
on the characteristic flow scales. Non-intrusive pres-
sure distributions measurements on blade surfaces have
been performed using pressure-sensitive paint (PSP).
This section introduces and provides samples of ap-
plications of these techniques in turbomachinery flow
fields.

14.3.1 Applications
of Laser Doppler Velocimetry (LDV)

Laser Doppler velocimetry measures the fluid velocity
by detecting the Doppler frequency shift of the laser light
that is scattered by small particles moving with the fluid.

Fig.14.9 Schematic of the stationary to rotating frame
optical transfer system for relative frame LDV meas-
urements within a centrifugal impeller (Abramian and
Howard [14.103])

The operating principles of this technique are well doc-
umented in the literature [14.87, 117]. This technique
attracted the attention of experimentalists in turboma-
chinery research soon after it was introduced in 1960s.
In addition to being non-intrusive, it allowed measuring
the relative velocity and turbulence fields within rotat-
ing blade rows, without having to use complex rotating
probe traverse and data-transmission mechanisms. Sam-
ple studies that have used LDV for measurements within
turbomachines are provided in Table 14.5.

Implementation of LDV to turbomachinery flows
comes with a variety of problems. For example, due
to the inherent accessibility limitations, LDV system
must operate in backscatter mode, which reduces the
signal-to-noise ratio by one to three orders of magni-
tude compared to the forward-scatter mode, depending
on the particles properties [14.118]. The signal-to-noise
ratio is further reduced due to reflections of the inci-
dent laser beams near end-wall regions. In addition,
the three-dimensional shapes of rotor blades create
shadow zones, especially near the hub regions, which
necessitate use of complicated off-axis measurement
systems. Another critical issue is the optical distortions
to the multiple laser beams caused by the curvature
of the access windows. These distortions increase the
uncertainty of the measurements by deforming the
measurement volume and changing the measurement
location [14.101]. Doukelis et al. [14.119] estimated
the changes in the orientation and relative position
of measurement volume due to the window curvature
for a three-dimensional (3-D) LDV system. They also
proposed a mathematical method to correct for refrac-
tions from windows, which could be incorporated into
data-acquisition procedures.

Most investigations involving LDV have been per-
formed in a stationary frame of reference by discretizing
the rotor passage period into bins, each with a finite
time interval, and ensemble-averaging the results over
these bins. To obtain sufficient convergence in mean
velocity and turbulence parameters, one would like to
increase the number of points per bin. However, increas-
ing the bin size incorporates effects of spatial variations

Fig.14.10a,b The LDV setup (a) and measured relative
velocity contours within the rotor passage of a low-speed
research compressor (b) (Wisler and Mossey [14.95])»
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Fig.14.1a,b Sample results from LDV measurements within (a) an axial compressor, rotor wake relative velocity
magnitude at peak efficiency (left) and near stall (right) (Van Zante et al. [14.111]) and (b) an axial turbine, time-averaged

flow field at the nozzle and rotor exits (Gottlich et al. [14.85])

in the flow structure within the rotor passage into the
ensemble-averaged statistics. A discussion on this issue
recommending a bin size of 50 points for measure-
ments in an axial flow turbine can be found in Ristic
et al. [14.108]. Abramian and Howard [14.103] pro-
vided detailed descriptions of mechanical and optical
designs for LDV measurements in a rotating frame of
reference within a centrifugal impeller. As shown in
Fig. 14.9, they used a Dove prism to transfer the laser
beams to the rotating frame of reference, along with a ro-
tating periscope, which located the probe volume at any
desired point within the blade passage.

As summarized in Table 14.5, one of the earliest
applications of LDV to turbomachinery was described
by Wisler and Mossey [14.95]. They performed veloc-
ity measurements upstream, within and downstream of
the first-stage rotor row of an axial compressor, us-
ing a single-component system operating in backscatter
mode. The flow was seeded by spray-atomizing a di-
lute water suspension of 1pm-diameter polystyrene
latex particles. Figure 14.11a,b shows their experimen-
tal setup and a sample contour plot of relative velocity
within the rotor passage at 50% span. Sample results
from more-recent applications within an axial compres-

Fig.14.12a~e Sample PIV setups showing the optical access windows and laser and camera positions: (a) axial compressor
(Copenhaver et al. [14.120]) WG: “Wake Generator”, (b) axial turbine (Lang et al. [14.121]), (c) optical periscope insert
for light-sheet delivery (Balzani et al. [14.122]), (d) schematic of the light-sheet probe and illumination pattern (Wernet
et al. [14.123]), (e) index-matched axial pump (Uzol et al. [14.124]) »
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sor [14.111] and within an axial turbine [14.85] are
presented in Fig. 14.12.

14.3.2 Applications
of Particle Image Velocimetry (PIV)

Particle image velocimetry consists of illuminating
a flow field seeded with microscopic particles with a thin
light sheet, and recording a pair of images, separated by
ashort time interval. The velocity is determined by divid-
ing the image into small interrogation areas, and using
cross-correlation analysis to measure the displacement
of particles within each area. This process provides the
instantaneous distribution of two in-plane components
of the velocity. Stereo imaging using two inclined cam-
eras provides all three components of the velocity in
the illuminated plane. Detailed information on technical
issues associated with applications of PIV is provided
in other chapters of this book. Extensive use of this
technology started in the late 1980s and early 1990s
[14.125-127]. Further details can be found in a series of
papers published in a dedicated volume of Measure-
ment Science and Technology Journal [14.128-131])
as well as in a book by Raffel et al. [14.132]. In this
section we focus on issues relevant to applications in
turbomachinery flows. Table 14.6 provides samples of
applications of PIV within tu4bomachines, which in-
cludes also the types of lasers, cameras and particles
used in each study. Specific components associated are
discussed below. Similar to LDV, the primary challenge
in applications of PIV in turbomachines are optical ac-
cess and reflections from curved and rough boundaries
that overwhelm the particle traces.

Components and Issues Elated

to Implementation
Lasers. Similar to other applications, most of the lasers
used in turbomachinery studies are frequency-doubled
Nd:YAG lasers, with a wavelength of 532 nm, pulse
duration of 5—10ns, and energy of 25-350 mJ/pulse.
The sheet thickness varies from about 0.5 to 3 mm.
Dual-cavity Nd:YAG lasers allow short pulse-to-pulse
separation times that is necessary for high-speed flow
measurements. Some early studies have used pulsed
copper-vapor lasers [14.133] and high-energy pulsed
ruby lasers [14.134].

Image Acquisition. In early years, data were recorded
on 35 mm films [14.133] or on media like Kodak Tech-
nicalpan [14.134] and then subsequently digitized. With
the introduction of digital camera technology with light-

sensitive charged-coupled device (CCD) chips, all PIV
studies nowadays collect images in digital form. A vari-
ety of cameras with different pixel resolutions from 640
x 480 to 2048 x 2048 pixels” have been used. In the so-
called interline transfer cameras, each pixel is divided
to an exposed part that senses the light, and a masked
part that serves as a buffer memory. Fast transfer of
data from the exposed to masked sections enables the
recording of two exposures on separate frames, with an
interframe delay of less than 1 ps. This approach solves
directional ambiguity issues, and provides a high signal-
to-noise ratio in correlation analysis. Another approach
to achieve short delay between frames is to use frame-
straddling, 1. e., to trigger the first laser pulse at the end
of the exposure time of one frame, and the second pulse
at the beginning of exposure of the subsequent frame.
In a different approach, Estevadeordal et al. [14.135]
used a two-color PIV system to resolve the directional
ambiguity while investigating the flow field within an
axial fan. Their first wavelength, 532 nm, was provided
by a frequency-doubled Nd:YAG laser, and the second
pulse at 640 nm was generated by using the Nd:YAG
laser to pump a dye laser. The images were recorded us-
ing a Kodak 3k x 2k pixels digital camera with a color
CCD chip.

Seeding. For measurements in axial and centrifugal
air compressors and turbines, the particle size is usu-
ally less than 1 pum. The particles are generated using
a variety of methods, such as commercial fog/smoke
generators, atomizing glycerin and water/oil mixtures,
alumina in ethanol dispersions, etc. In one of the early
applications of PIV in turbomachines, which were per-
formed in water, Dong et al. [14.133] used particles
containing embedded fluorescent dyes that responded
efficiently to green lasers. The specific gravity of these
particles varied between 0.95 and 1.1, their size was in
the 20—40 wm range. By filtering out the green light us-
ing a filter placed in front of the camera, they could
perform measurements very close to boundaries. Choi
et al. [14.136] used nylon 12 particles to investigate
the flow field within a centrifugal impeller operating in
water. Silver-coated hollow glass particles were used
by Uzol et al. [14.124] in an axial pump facility con-
taining a concentrated sodium iodide (Nal) solution for
refractive-index-matching purposes, and by [14.137] in
a centrifugal rotary blood pump.

Optical Access. The flow field in a multistage turbo-
machine is visually obstructed by the blades, making
optical access for the laser sheet and the cameras
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Table14.6 Sample studies that have used particle image velocimetry (PIV) technique in investigating different aspects of

turbomachinery flow fields.
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Table14.6 (continued)
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14.3 Optical Measurement Techniques

the key challenge in application of PIV in turboma-
chines. In addition, light reflections from the blade
surfaces and end walls adversely affect the quality
of images, especially near the boundaries. In applica-
tions involving air flows and realistic geometries, these
problems seem to be unavoidable. As a result, most
PIV data obtained in multistage turbomachines have
covered limited areas, located away from boundaries
and mostly between blade rows (see Table 14.6 for
references). Characteristic setups for axial air turbo-
machines used by Copenhaver et al. [14.120], Lang
et al. [14.121], Balzani et al. [14.122] and Wernet
et al. [14.123] are presented in Figs. 14.12a-d. In al-
most all axial turbomachine applications, the laser sheet
has been introduced using periscopic optical inserts
(Figs. 14.12¢,d), which are located upstream or down-
stream of the measurement domain, and attached to
traverses that enable measurements at different span-
wise planes. The cameras view the illuminated plane
through windows installed on the outer casing, which
are curved internally to match the contour of the
machine.

Examples of various PIV setups for measurements
within centrifugal turbomachinery, and referenced in
Table 14.6, are presented in Fig. 14.13. In most ap-
plications, the sample area has been illuminated using
side windows [14.136, 143] or inserted probes [14.146].
In a recent study, Estevadeordal et al. [14.163] in-
troduced a fiber-optic PIV system that could be used
in flows without a direct optical access, and im-
plemented it to measure the flow within an axial
turbine.

To resolve the limited access problem, Uzol
etal. [14.124] and Chow et al. [14.151] have introduced
a refractive-index-matched liquid facility that enabled
unobstructed PIV measurements within an entire stage
by matching the optical index of refraction of the blades
with that of the working fluid, a concentrated solution
of Nal in water (*64% by weight). This method not
only made it possible to obtain complete optical access
to an entire stage, it also minimized the light reflection
from boundaries as well, allowing high-resolution mea-
surements of blade boundary layers. The optical setup
of this system is illustrated in Fig. 14.12e. A miniature
refractive-index-matching facility made entirely from
transparent material was also used recently by Sankovic

Fig.14.13a-c Sample PIV setups for centrifugal turboma-
chinery: (a) centrifugal pump (Sinha and Katz [14.143]);
(b) centrifugal impeller (Choi et al. [14.136]); (c) centrifugal
compressor (Wernet et al. [14.146]) «

et al. [14.137] to measure the flow structure within
a centrifugal rotary blood pump.

Data Acquisition. Although high-speed PIV systems
have started to appear in recent years, a common typical
turbomachinery PIV system with low-frame-rate cam-
eras cannot be used to obtain time-resolved flow field
measurements. To obtain phase-locked data at specific
phase of the rotor blade-passing period, a signal obtained
from a shaft encoder is fed to a digital delay generator,
which then triggers the lasers and the cameras. Multiple
instantaneous measurements obtained at a specific phase
are ensemble-averaged to obtain the phase-averaged
flow and turbulence parameters. The database should
be sufficiently large to obtain converged statistics. In
many previous applications, 100 and 1000 samples have
been shown to provide converged phase-averaged and
turbulence quantities, respectively [14.164, 165]. How-
ever, it is essential to check convergence in individual
applications. By averaging phase-locked data obtained
over many phases, which are distributed evenly over an
entire cycle, one can determine the average-passage or
time-mean flow structure. Any averaging of a flow field
introduces stresses, and time averaging of phase-locked
data introduces the deterministic stresses [14.166, 167].
A detailed discussion on how to calculate the spatial
distributions of deterministic stresses within a turboma-
chine based on PIV data obtained in discrete phases can
be found in Sinha et al. [14.168] and Uzol et al. [14.150],
[14.153].

Samples of Results
Figures 14.14-14.17 show selected sample results of
both two-dimensional and stereoscopic PIV measure-
ments performed within various axial and centrifugal
turbomachinery facilities. A more-extended set of ref-
erences is provided in Table 14.6. A two-dimensional,
phase-averaged relative velocity vector map measured at
70% span within the transonic axial compressor facility
at the NASA Glenn Research Center [14.145] is pre-
sented in Fig. 14.14a. Shock waves attached to the rotor
leading edge of blades are clearly visible. Figure 14.14b
shows the unsteady 2-D velocity field within the stator
passages of the transonic research compressor facility
at Purdue University [14.149]. These results were used
to investigate the decay of upstream rotor wakes as they
are convected through the stator passages. Figure 14.14¢
presents multiplane two-dimensional data, showing the
spanwise variation of the rotor relative velocity within
the axial compressor facility at the Von Karman In-
stitute [14.122]. Figure 14.14d presents stereoscopic
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a) Circumferential-position (mm) b) #T=00 t/T=0.1 t/T=0.2

50

40

Magnitude (m/s)
485
460
435
410
Rotation 385
360
335
310
285
260

30

20

-4 -2 0
Vorticity

=
I

Lo by b by e b 8y

0 10 20 30 40 50
Axial position (mm)

t/T=0.6 t/T=0.5

W (m/s)
55.0
513
41.7
44.0
40.3
36.7
33.0
293
25.7
22.0
18.3
14.7
11.0

73
37

€41 |) Hed

Fig.14.14 (a) Velocity distribution within a transonic compressor (Wernet et al. [14.145]) with colors indicating the vector
magnitude; (b) unsteady vorticity field within a stator passage (Sanders et al. [14.149]); (c) rotor relative velocity field
from hub to tip (Balzani et al. [14.122]); (d) average radial velocity distribution near stall, stereoscopic measurement (Liu
et al. [14.158])
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Fig.14.15 Sample PIV data obtained in the refractive-index-matched axial pump facility at Johns Hopkins University:
phase-averaged velocity field (fop left), turbulent kinetic energy (bottom left) and vorticity (right) at mid-span within an

entire stage (Chow et al. [14.151])

PIV data of the flow near stall conditions in the low-
speed axial compressor facility at Beijing University
[14.158]. These measurements provide clear views on
the complex, spatially nonuniform flow within axial
turbomachines. Yet, in all cases, reflection from the sur-
faces and limitations in access prevent coverage of the
entire stage and prevent measurements close to bound-
aries. As noted before, in air facilities, the only ones that
can examine compressibility effects, these problems are
extremely difficult to resolve.

Figures 14.15 and 14.16 present sample results
from the two-dimensional and stereoscopic measure-
ments performed in the refractive-index-matched axial
turbomachinery facility at Johns Hopkins University.
The unobstructed view allowed detailed investigations
of wake-blade, wake—wake, wake—boundary layer, and
tip vortex—blade interactions in an actual multistage
environment. Figure 14.15 shows characteristic dis-
tributions of phase-averaged velocity, vorticity and
turbulent kinetic energy covering the entire mid-span
of a second stage. Data obtained at 10 different
phases was used for calculating the distributions of
average-passage flow and deterministic stresses (Uzol
et al. [14.150, 153]). High-resolution measurements
(vector spacing of 117 wm) that required patching
of several sample areas were used for characteriza-
tion of turbulence parameters, including Reynolds and
subgrid (SGS) stresses and associated energy fluxes,
due to shearing and straining of wakes during pas-

sage in downstream blade rows (Figs. 14.16a,b, Chow
et al. [14.151, 154, 161]; Soranna et al. [14.162,169]).
These data were also used to show that unsteady flow
caused by upstream wake impingement stabilized the
structure of rotor blade boundary layers (Fig. 14.16c,
Soranna et al. [14.159]). Samples from stereoscopic
measurements in multiple, closely spaced planes, span-
wise variations and tip vortex—blade interactions, are
presented in Fig. 14.16d.

Figure 14.17a presents sample 2-D PIV data ob-
tained in a centrifugal pump (Fig. 14.13a) seeded with
fluorescent particles and filtering of images to eliminate
adverse effects of reflections [14.143]. Figure 14.17b
shows sample data obtained in a high-speed centrifugal
compressor (Fig. 14.13c) operating both at the design
point and during surge [14.144, 146].

14.3.3 Applications
of Laser Two-Focus Velocimetry (L2F)

The L2F technique measures the time of flight of small
particles between two highly focused laser spots. Unlike
LDV, an instantaneous realization with L2F is generally
not a valid measurement, since it is not possible to en-
sure that the same particle passes through both laser
spots. Therefore, L2F has been utilized as a statistics-
based measurement device. In typical applications, one
of the laser beams is rotated around the other, and many
time-of-flight measurements are performed over a range
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Fig.14.16a-d PIV measurements in a refractive-index-matched axial pump facility: high-resolution measurements of (a) rotor
wake (Chow et al. [14.154]), (b) wake-blade interaction near the rotor leading edge (Soranna et al. [14.162]), (c) wake—-boundary
layer interactions near the rotor trailing edge (Soranna et al. [14.159]) at midspan, (d) phase-averaged radial velocity (leff), and
turbulent kinetic energy (right) between 50-93% span, obtained using stereoscopic measurements (Uzol et al. [14.156])
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Table14.7 Sample studies that have used laser-two-focus velocimetry (L2F) technique in investigating different aspects
of turbomachinery flow fields

Laser two-focus velocimetry (L2F)

Author(s) Year Type of machine Subject of study
McDonald et al. [14.170] 1980 Transonic compressor rotor Flow structure
Fagan and Fleeter [14.104] 1994 Low-speed centrifugal compressor Flow structure
Calvert and Stapleton [14.171] 1994 Transonic fan Flow structure
Ivey and Swoboda [14.43] 1998 Low-speed axial compressor Tip clearance effects
Kost et al. [14.63] 2000 Acxial turbine Unsteady flow
Ottavy et al. [14.172] 2001 Transonic axial compressor ‘Wake—shock interaction
Tiedemann and Kost [14.65] 2001 High-pressure axial turbine Rotor—stator clocking
Schodl et al. [14.173] 2002 Transonic centrifugal compressor 3-D flow structure
Ziegler et al. [14.174] 2003 High-speed centrifugal compressor Blade-wake interaction
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Fig.14.17a,b Sample PIV measurements in a (a) centrifugal pump, phase-averaged velocity (left) and turbulent kinetic
energy (right) (Sinha and Katz [14.143]), (b) high-speed centrifugal compressor diffuser velocity vector maps at the
design point (left, Wernet [14.144]) and during a surge (right, Wernet et al. [14.146]) MCF: Main Clearance Flow, SCF:
Splitter Clearance Flow
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Fig.14.18 (a) A sample L2F measurement setup within an axial compressor, and (b) corresponding data compared with
three-hole pressure probe measurements (Ottavy et al. [14.172])

of measurement directions. The data produces a two-
dimensional probability histogram, which is used to
calculate the average velocity and flow angle, along with
an estimate of turbulence intensity. Table 14.7 provides
alist of sample studies that have used L2F to study flows
within turbomachines.

Fagan and Fleeter [14.104] compared the results of
LDV and L2F measurements performed within a large-
scale, low-speed centrifugal compressor. They found
that, although L2F allowed measurements closer to
boundaries compared to LDV, the LDV data demon-
strated more consistency, in terms of conservation of
mass and a reasonable distribution of work. They con-
cluded that LDV would be preferable to L2F due to the
latter’s low effective sampling rate and upper limits of
turbulence intensity. Both they and Schodl [14.177,178]
suggest an upper limit of approximately 15% for accu-
rate turbulence measurements.

Similar to LDV, applications of L2F in turboma-
chines are adversely affected by optical distortions
during the passage of the laser beams through curved
optical access windows. The problem is more severe
for L2F since the distortions prevent the creation of ac-
ceptably focused spots, resulting in a total loss of data.
Ottavy et al. [14.179] studied these distortions and pro-
posed a corrective method, which restored the optical
focus, and subsequently applied their setup within an ax-
ial transonic compressor [14.172]. Figure 14.18 shows
their setup, along with a comparison of their L2F data to

results of three-hole pressure probe measurements per-
formed downstream of an IGV and upstream of a rotor
TOW.
Schodl et al. [14.173] introduced a new L2F tech-
nique called Doppler laser two-focus velocimeter, and
applied it to obtain data within a transonic centrifugal
compressor. In this technique, the time-of-flight data
was used to measure the velocity vector components in
the plane perpendicular to the optical axis. The Dop-
pler shift of the scattered light, as measured using iodine
absorption (Sect. 14.3.4), was used to obtain the veloc-
ity component along the optical axis, i. e., similar to the
Doppler global velocimetry (DGV) technique.

14.3.4 Applications
of Doppler Global Velocimetry (DGV)

Doppler global velocimetry, also known as planar Dop-
pler velocimetry (PDV), is a planar flow measurement
technique, which is based on measuring the Doppler
shift of light scattered from tracer particles. The fre-

Fig.14.19 (a) Comparison of surface pressure distribution
on a rotor suction side in a transonic axial compres-
sor obtained using PSP (/eft) to CFD predictions (right)
(Navarra et al. [14.175]); (b) Experimental setup for PSP
measurements in an automotive turbocharger, and (c) pres-
sure distributions on the compressor inlet wall and on the
impeller blade (Gregory [14.176]) »
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Table14.8 Sample studies that have used pressure-sensitive paint (PSP) technique in investigating various aspects of

turbomachinery flow fields

Pressure-sensitive paint (PSP)

Author(s) Year  Type of machine

Sabroske et al. [14.184] 1995 Axial compressor

Liuet al. [14.185] 1997  High-speed axial compressor
Engler et al. [14.186] 2000  Axial turbine

Navarra et al. [14.175] 2001 Transonic axial compressor
Lepicovsky and Bencic [14.187] 2002  Supersonic throughflow fan
Gregory [14.176] 2004  Centrifugal compressor

quency shift is measured by means of a frequency—
intensity converter, which typically consists of measur-
ing the attenuation of the scattered light as it passes
through an iodine-vapor absorption cell [14.180]. This
technique is yet to be implemented for turbomachinery
flows, but setups designed for turbomachine appli-
cations have already been introduced [14.181, 182].
Wernet [14.183] introduced a hybrid PIV/DGV tech-
nique and proposed to use it as a viable technique that
could be applied to flows with limited optical access,
such as turbomachinery flow fields.

14.3.5 Applications
of Pressure-Sensitive Paint (PSP)

The current PSP method is based on covering a surface
with luminescent coatings that contain sensor molecules
embedded in a transparent oxygen-permeable binder.
When illuminated by light of appropriate wavelength,
the excited sensors molecules emit light at a different
wavelength, whose intensity is inversely proportional to
the partial pressure of oxygen near the surface. Thus,
the intensity of luminescence provides the distribution
of surface static pressures. Further details about this
technique can be found in a comprehensive review by
Bell et al. [14.188]. This method is an attractive al-
ternative to conventional surface pressure measurement
techniques since pressure taps or flush-mounted trans-
ducers (Sect. 14.2.2) only provide data at discrete points,
and are restricted to sites where they can be installed
on the blade surfaces. It is typically impossible to in-

14.4 Concluding Remarks

This chapter attempts to provide a comprehensive but
brief summary of measurement techniques that have
been used for studying flows within turbomachines.

Subject of study

Blade pressure distributions

Blade surface pressure measurements with shocks
Shock movement and corner stall

Blade surface pressure in transonic conditions
Effect of changing operating conditions

Effect of inlet distortion on surface pressures

strument regions of most interest, such as thin leading
edges and sharp corners. Furthermore, many sensors are
required to obtain a reasonable spatial distribution, mak-
ing the measurements time consuming and expensive.
PSP provide the spatial distribution of surface pressures
at high resolution, enabling measurements of aerody-
namic loads on rotor and stator blades. It also serves as
a quantitative surface visualization tool that shows the
location of shocks, and boundary-layer separation and
reattachment points.

Unlike external aerodynamics studies, where PSP is
well established, its application to turbomachinery com-
ponents is rather limited. Sample studies that have used
pressure-sensitive paint in turbomachines are summa-
rized in Table 14.8. Selecting two examples, Navarra
et al. [14.175] used PSP to measure the pressure distri-
bution on the suction surface of the first stage rotor
of a state-of-the-art, full-scale transonic compressor.
Figure 14.19a shows a comparison of their data with
computational fluid dynamics (CFD) results. Recently,
Gregory [14.176] presented results of PSP measure-
ments in the centrifugal compressor of a Garrett T25 tur-
bocharger, which is typically used in automotive appli-
cations. Using porous polymer/ceramic PSP they inves-
tigated the effect of inlet distortion on the pressure distri-
bution on the surface of blades and on the wall at the inlet
to the compressor. Figure 14.19b presents their experi-
mental setup, showing the transparent inlet wall that al-
lowed visual access, the blue light-emitting diode (LED)
used to excite the PSP, and the camera that recorded
the intensity of luminescence from painted surface. Fig-
ure 14.19b shows the unsteady wall pressure distribution
on the inlet wall (top) and on the impeller blade (bottom).

Being focused on techniques, we discuss issues that
are unique to applications of various sensors in such
a complex flow environment. For each class of sen-
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sors, a table provides examples of applications, along
with sample results. We also attempt to include exam-
ples of implementation in various types of machines,
e.g., axial and centrifugal compressors and pumps, large
and small facilities, full-scale devices and small-scale
models. However, one should bear in mind that one can-
not cover more than 50 years of experimental studies
of flow within turbomachines in a single chapter, or in
a single book for that matter. The reader should refer
to the several books mentioned in the introduction for
a more-comprehensive treatment of the fluid-mechanics
and heat-transfer problems within turbomachines. Be-
sides serving as samples, the cited references can also
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lenge posed by the rapid advancements in CFD tools.
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multipoint flow measurement tools enable us to eluci-
date and quantify complex interactions between multiple
flow features, which is characteristic to turbomachines.
The resulting insights are essential both for validation of
predicted flows, as well as for challenging the modeling
community to continue addressing discrepancies.
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