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Data Analysis25. Data Analysis

From the beginning of science, visual observation
has played a major role. At that time, the only
way to document the results of an experiment
was by verbal description and manual drawings.
The next major step was the invention of pho-
tography more than one and a half centuries
ago, which enabled experimental results to be
documented objectively. In experimental fluid
mechanics, flow visualization techniques gave di-
rect insight into complex flows, but it was very
difficult and time consuming to extract quan-
titative measurements from photographs and
films.

Nowadays, we are in the middle of a sec-
ond revolution sparked by the rapid progress in
both photonics and computer technology. Sensi-
tive solid-state cameras are available that acquire
digital image data, and standard personal com-
puters and workstations have become powerful
enough to process these data. These technologies
are now available to any scientist or engineer. As
a consequence, image processing has expanded
and continues to expand rapidly from a few spe-
cialized applications into a standard scientific
tool.

This chapter gives a brief presentation of some
of the most important general image processing
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techniques that are required to process image
data in experimental fluid mechanics. The second
section (Sect. 25.2) deals with motion analysis.
The most important methods are introduced and
classified according to the fundamental principles,
assumptions and approximations upon which they
are based.

25.1 Image Processing

25.1.1 Sampling and Quantization

Computers process digital numbers. Therefore, the fi-
nal steps of digital image formation are digitization and
quantization.

Sampling Theorem
Digitization means sampling the gray values at a discrete
set of points, which can be represented by a matrix.
Sampling may already occur in the sensor that converts

the collected photons into an electrical signal. A CCD
camera already has a matrix of discrete sensors. Each
sensor is a sampling point on a two-dimensional (2-D)
grid.

Sampling not only leads to a reduction in resolution,
but also to a loss of information as structures of about the
scale of the sampling distance and finer will be lost. It
also introduces considerable distortions if fine structures
are sampled. Figure 25.1 shows a simple example. Digi-
tization is simulated by taking only every fourth pixel in
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1438 Part D Analysis and Post-Processing of Data
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Fig. 25.1a,b Explanation of the moiré
effect with a ring test pattern: (a) orig-
inal pattern with structures that are
sampled four times per wavelength
at the edge of the ring; (b) Pattern
first downsampled using only every
forth column and row and then up-
sampled using linear interpolation to
the original size

every fourth row. This kind of image distortion is called
the moiré effect. The same phenomenon, called alias-
ing, is known for one-dimensional signals, especially
time series.

The sampling theorem states under which conditions
these distortions can be avoided and, even more, whether
a complete reconstruction of the sampled continuous
image is possible; if the two-dimensional (2-D) spectrum
ĝ(k1, k2) of a continuous image function g(x1, x2) is
band-limited, i. e.,

ĝ(k) = 0 ∀|k1,2| ≥ kmax1,max2 , (25.1)

then it can be reconstructed exactly from samples with
a distance

∆xw = 1

2kmax1,max2
. (25.2)

In other words, at least two samples per wavelength
are required. The maximum wavenumber that can be
sampled without errors is called the Nyquist or limiting
wavenumber kmax. Often dimensionless wavenumbers
k̃ = k/kmax that are scaled by the Nyquist wavenumber
and are confined to an interval [−1, 1] are used.

Standard Sampling
An array of photosensitive sensor elements does not
perform a point sampling. Rather the average over the
light-sensitive area of each sensor element is taken. This
corresponds to a convolution of the image signal by
the spatial distribution of the light sensitivity. In the best
case, the whole area of the sensor element is equally sen-
sitive. This is known as standard sampling. It is a kind of
regular sampling, because each point in the continuous
space is equally weighted.

The averaging over the light-sensitive area
causes spatial blurring of the signal and thus some
band limitation. However, this is not sufficient to avoid

moiré effects. Convolution by a box function Π(x/∆x)
of the width ∆x in the spatial domain is equivalent to
a multiplication by

sinc(k̃/2) = sin πk̃/2

πk̃/2

in the Fourier domain. At the Nyquist wavenumber
k̃ = 1, the Fourier transform of the box function is still
2/π. The first zero crossing occurs only at twice the
Nyquist wavenumber. The band limitation is worse with
a real imaging sensor, when only a fraction of the sensor
element area is light sensitive.

Because of the insufficient band limitation by the
imaging sensor, other means have to be taken in or-
der to avoid moiré effects. The best situation is when
the imaged object is bandlimited itself. Additional band
limitation can also be introduced by the optical system.

Reconstruction from Samples
Reconstruction is performed by a suitable interpolation
of the sampled points. Generally, the interpolated points
at continuous positions gr (x) are calculated from the
sampled values g(rm,n) on a regular grid

rm,n = [m∆x1, n∆x2]T with m, n ∈ � . (25.3)

weighted with suitable factors depending on the distance
from the interpolated point:

gr(x) =
∑

m,n

h(x−rm,n)gs(rm,n) . (25.4)

From the sampling theorem it can be inferred that an
exact reconstruction of the continuous image is possible
when the original continuous image meets the sampling
theorem and the transfer function of the interpolation
kernel h(x) is a box function:

ĝr(k) = Π(k̃1/2, k̃2/2)ĝ(k) . (25.5)
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Data Analysis 25.1 Image Processing 1439

Then the ideal interpolation function is the inverse
Fourier transform of the box function, a sinc function:

h(x) = sinc(x1/∆x1) sinc(x2/∆x2) . (25.6)

Oversampling
Unfortunately, the ideal interpolation function only
decreases like 1/x towards zero. Therefore, correct inter-
polation requires many sampling points and is therefore
inefficient.

More-efficient solutions to the interpolation problem
can be obtained if the sampling theorem is overfilled,
i. e., ĝ(k) is already zero before the Nyquist wavenum-
ber is reached. Then ĥ(k) can have any value in the region
where ĝ vanishes without introducing errors. This free-
dom can be used to construct an interpolation function
that decreases more quickly in the spatial domain, i. e.,
has a minimum-length interpolation mask. We can also
start from a given interpolation formula. Then the devia-
tion of its Fourier transform from a box function tells us
to what extent structures will be distorted as a function
of the wavenumber.

The principle of oversampling is not only of im-
portance for the construction of effective interpolation
functions. It is also essential for the design of any type
of precise filter with small filter masks (Sects. 25.1.4,
25.1.5). Generally, the rate of oversampling, which in-
creases the number of data points, and the requirements
of the filter design must be balanced. Practical expe-
rience shows that a sample rate between three and six
samples per wavelength, i. e., 1.5- to 3-fold oversam-
pling, is a good compromise.

Quantization and Resolution
Computer can only handle digital numbers. Therefore
continuous number are mapped onto a limited number
Q of discrete gray values (quantization):

[0,∞[ Q−→ {g0, g1, . . . , gQ−1} = G .

Quantization always introduces errors, as the true value
g is replaced by one of the quantization levels gq . If the
quantization levels are equally spaced with a distance ∆g
and if all gray values are equally probable, the variance
introduced by the quantization is given by

σ2
q = 1

∆g

gq+∆g/2∫

gq−∆g/2

(g − gq)2dg = 1

12
(∆g)2 . (25.7)

The standard deviation σq is about 0.3 times the distance
between the quantization levels ∆g.

With respect to the quantization, the question arises
of the accuracy to which we can measure a gray value.
At first glance, the answer to this question seems to be
trivial and given by (25.7): the maximum error is half
a quantization level and the mean error is about 0.3
quantization levels.

But what if we measure the value repeatedly? This
could happen if we take many images of the same object
or if we have an object of a constant gray value and
want to measure the mean gray value of the object by
averaging over many pixels.

For repeated measurements, the error of the mean
value decreases with the number N of measurements
according to

σmean ≈ 1√
N

σ , (25.8)

where σ is the standard deviation of the individual mea-
surements and N is the number of measurements taken.
If 100 measurements are taken, the error of the mean
should be just about a tenth of the error of the individual
measurement.

Taking quantization into account, however, aver-
aging requires a more-detailed analysis. If no noise
is present, the same quantized value is always meas-
ured. Then the result cannot be more accurate than the
individual measurements.

However, if the measurements are noisy, we would
obtain different values for each measurement. The prob-
ability for the different values reflects the mean and
variance of the noisy signal, and because we can the
distribution, we can estimate both the mean and the
variance.

As an example, a standard deviation of the noise
equal to the quantization level is discussed. Then, the
standard deviation of an individual measurement is
about three times larger than the standard deviation due
to the quantization. However, already with 100 measure-
ments, the standard deviation of the mean value is only
0.1, or 3 times lower than that of the quantization.

As in images we can easily obtain many measure-
ments by spatial averaging, there is the potential to
measure mean values with standard deviations that are
much smaller than the die standard deviation of quanti-
zation in (25.7).

The accuracy is also limited, however, by other,
systematic errors. The most significant source is the un-
evenness of the quantization levels. In a real quantizer,
such as an analog-to-digital converter, the quantization
levels are not equally distant but show systematic devia-
tions that may be up to half a quantization interval. Thus,
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1440 Part D Analysis and Post-Processing of Data

careful investigation of the analog-to-digital converter is
required to estimate what really limits the accuracy of
the gray value measurements in images.

25.1.2 Radiometric Corrections

The first image processing steps include two classes of
operations: point and geometric operations. Essentially,
these two types of operations modify the what and where
of a pixel.

Point operations modify the gray values at individual
pixels depending only on the gray value and possibly
on the position of the pixels. Generally, such a kind of
operation is expressed by

G′
mn = Pmn(Gmn) . (25.9)

The indices of the function P denote the possible de-
pendence of the point operation on the position of the
pixel.

Homogeneous point operators are the same for all
pixel and can be implemented via look-up tables. They
are a very useful tool for inspecting images. As the
look-up table operations work in real time, images can
be manipulated interactively. If only the output look-
up table is changed, the original image content remains
unchanged. Here, some typical tasks are demonstrated.

Evaluating and Optimizing Illumination
With the naked eye, is is very hard to estimate the homo-
geneity of an illuminated area (Fig. 25.2a). We need to
mark gray scales such that absolute gray levels become
perceivable for the human eye. If the radiance distribu-
tion is continuous, it is sufficient to use equidensities.
This technique uses a staircase-type homogeneous point
operation by mapping a certain range of gray scales onto
one. This point operation is achieved by zeroing the p
least-significant bits with a logical AND operation:

q′ = P(q) = q ∧ (2p −1) , (25.10)

where ∧ denotes the logical (bitwise) and and the over-
line denotes negation. This point operation limits the
resolution to Q − p bits and, thus, 2Q−p quantization
levels. Now, the jump between the remaining quantiza-
tion levels is large enough to be perceived by the eye
and to see contour lines of equal absolute gray scale
in the image (Fig. 25.2). Another way to mark absolute
gray values is the so-called pseudocolor image. With this
technique, a gray level q is mapped onto a red–green-
blue (RGB) triple for display. As color is much better

��

��

Fig. 25.2 (a) and (b) (contrast-enhanced, gray scale 184–
200): edges artificially produced by a staircase look-up table
(LUT) with a step height of 1.0 and 2.0 make contours of
constant irradiance easily visible

recognized by the eye, this helps reveal absolute gray
levels.

Detection of Underflow and Overflow
Under- and overflows of the gray values of a digitized
image often go unnoticed and cause serious bias in fur-
ther processing, for instance, for mean gray values of
objects or the center of gravity of an object. In most
cases, such areas cannot be detected directly. They may
only become apparent in textured areas when the tex-
ture is bleached out. Over- and underflow are detected
easily in histograms by strong peaks at the minimum
and/or maximum gray values (Fig. 25.3). With pseudo-
color mapping, the few lowest and highest gray values
could be displayed, for example, in blue and red, respec-
tively. Then, gray values dangerously close to the limits
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Fig. 25.3a,b Detection of underflow and overflow in digi-
tized images by histograms: (a) image with underflow and
(b) its histogram

immediately pop out of the image and can be avoided
by correcting the illumination, lens aperture or gain and
offset of the camera.

Noise Variance Equalization
The variance of the noise of a linear image sensor
(Sect. 24.4.9) is not constant but depends on the image
intensity g according to

σ2
g (g) = σ2

0 + Kg . (25.11)

Many statistical image analysis procedures, however, are
based on gray-value-independent, normally distributed,
additive noise. Because brighter regions in the im-
age have a larger variance, their influence is generally
overestimated, while darker regions still contains valid
information with less statistical uncertainty, which is not
adequately used.

The nonlinear gray value transform

h(g) = γ gmax

√
σ2

0 + Kg−σ0
√

σ2
0 + Kgmax −σ0

, (25.12)

maps the gray values into the interval [0, γ gmax] and the
standard deviation

σh = γ Kgmax/2√
σ2

0 + Kgmax −σ0

(25.13)

is independent of the gray value.
The nonlinear transform becomes particularly sim-

ple for an ideal imaging sensor with no dark noise
(σ0 = 0). Then a square-root transform must be applied
to obtain an intensity-independent noise variance:

h(g) = γ
√

ggmax and σh = γ

2

√
Kgmax . (25.14)

Correction for Inhomogeneous Illumination
Every real-world application has to contend with un-
even illumination of the observed scene. Even if a lot
of effort is spent optimizing the illumination setup, it
is still very hard to obtain perfectly even object ir-
radiance. A nasty problem is caused by small dust
particles in the optical path, especially on the glass
window close to the charge-coupled device (CCD) sen-
sor. Because of the distance of the window from the
imager, these particles – if they are not too large –
are blurred to such an extent that they are not di-
rectly visible. However, they still absorb some light
and thus cause a drop in the illumination level in
a small area. These effects are not easily visible in
a scene with high contrast and many details, but
become very apparent in the case of a uniform back-
ground (Fig. 25.2a,b). Some imaging sensors, especially
complementary metal oxide semiconductor (CMOS)
sensors, also show considerable uneven sensitivity of the
individual photoreceptors, which adds to the nonunifor-
mity of the image. These distortions can severely limit
the quality of the images. These effects make it more
difficult to separate an object from the background,
and introduce systematic errors for subsequent image
processing steps.

It is possible to correct for these effects if we
know the nature of the distortion and can take suitable
reference images. A simple two-point radiometric cal-
ibration of an imaging sensor can be applied for every
sensor with a linear response. The following reference
images are taken: firstly, a dark image B without any
illumination and secondly a reference image R with
an object of constant radiance, e.g., by looking with
the camera into an integrating sphere. Then, a nor-
malized image corrected for both an inhomogeneous

Part
D

2
5
.1



1442 Part D Analysis and Post-Processing of Data
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Fig. 25.4a–d Contrast-enhanced (a) dark image and (b) reference image for a two-point radiometric calibration of a CCD
camera with analog video output. Two-point radiometric calibration with the dark and reference image: (c) original image
and (d) calibrated image; in the calibrated image the dark spots caused by dust are no longer visible

dark image and inhomogeneous sensitivity is given
by

G′ = c
G − B
R− B

. (25.15)

Figures 25.4a,b show a contrast-enhanced dark image
and reference image of a CCD camera. Typical signal
distortions can be observed. The signal oscillation at the
left edge of the dark image results from an electronic
interference, while the dark blobs in the reference im-
age are caused by dust on the glass window in front
of the sensor. The improvement due to the radiometric
calibration according to (25.15) can clearly be seen in
Figs. 25.4c,d.

Often, the quantity to be measured by an imaging
sensor is related in a nonlinear way to the measured

gray value. In such cases a more-complex nonlinear
radiometric calibration is required.

25.1.3 Geometric Corrections

Geometric transforms of images are required to correct
for geometric distortions introduced during the image
formation process or if scaling, rotating or any other kind
of geometric transform of images is required. These ge-
ometric operations modify only the position of a pixel.
A pixel located at the position x is relocated to a new po-
sition x′. These operations include two major steps. In
most applications, the mapping function is not given ex-
plicitly but must be derived from corresponding points.
When an image is warped by a geometric transform,
the pixels in the original and warped images almost
never fall onto each other. Thus, it is required to in-
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Data Analysis 25.1 Image Processing 1443

terpolate gray values at these pixel from neighboring
pixels.

Forward and Inverse Mapping
Geometric transforms define the relationship between
the points in two images. This relation can be expressed
in two ways. Either the coordinates of the output image
x′ can be specified as a function of the input coordinates
x or vice versa:

x′ = M(x) or x = M−1(x′) , (25.16)

where M specifies the mapping function and M−1 is its
inverse. The two expressions in (25.16) give rise to two
principal kinds of spatial transformation: forward and
inverse mapping.

With forward mapping, a pixel of the input image
is mapped onto the output image (Fig. 25.5a). Gener-
ally, a pixel of the input image lies between the pixels
of the output image. With forward mapping, it is not ap-
propriate just to assign the value of the input pixel to
the nearest pixel in the output image (point-to-point or
nearest-neighbor mapping), as it may happen that the
transformed image contains holes as a value is never as-
signed to a pixel in the output image or that a value is
assigned more than once to a point in the output image.
An appropriate technique distributes the value of the in-
put pixel to several output pixels. The easiest procedure
is to regard pixels as squares and to take the fraction of
the area of the input pixel that covers the output pixel
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Fig. 25.5a,b Illustration of (a) forward mapping and (b) in-
verse mapping for spatial transformation of images

as the weighting factor. Each output pixel accumulates
the corresponding fractions of the input pixels which –
if the mapping is continuous – add up to cover the whole
output pixel.

With inverse mapping, the coordinates of a point in
the output image are mapped back onto the input image
(Fig. 25.5b). It is obvious that this scheme avoids holes
and overlaps in the output image as all pixels are scanned
sequentially. Now, the interpolation problem occurs in
the input image. The coordinates of the output image in
general do not hit a pixel in the input image but lie in
between the pixels. Thus, its correct value must be inter-
polated from the surrounding pixels. Generally, inverse
mapping is a more-flexible technique, as it is easier to
implement various types of interpolation techniques.

Ideal Interpolation
The basis of interpolation is the sampling theorem. The
problem is related to the fact that the reconstruction
of the continuous image from the sampled image in
practice is quite involved and can be performed only ap-
proximately because the ideal continuous interpolation
mask h, the sinc function, requires too many operations.

Any approximate solution should still reproduce the
grid points and not depend on any other grid point (the
interpolation condition):

h(xm,n) =
{

1 m = 0, n = 0

0 otherwise
. (25.17)

Any interpolation mask must, therefore, as for the ideal
interpolation mask, have zero crossings at all grid points
except the zero point, where it is 1.

The ideal interpolation function in (25.6) is separa-
ble. Therefore, interpolation can be as easily formulated
for higher-dimensional images. We can expect that
all solutions to the interpolation problem will also be
separable. Consequently, we need only discuss the one-
dimensional (1-D) interpolation problem. Once it is
solved, we also have a solution for the multidimensional
interpolation problem.

An important special case is the interpolation to
intermediate grid points halfway between the existing
grid points. This scheme doubles the resolution and im-
age size in all directions in which it is applied. Then,
the continuous interpolation kernel reduces to a discrete
convolution mask. As the interpolation kernel (25.5) is
separable, we can first interpolate the intermediate points
in a row in the horizontal direction before we apply ver-
tical interpolation to the intermediate rows. In linear
interpolation three dimensions, a third 1-D interpolation
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1444 Part D Analysis and Post-Processing of Data

is added in the z or t direction. The interpolation kernels
are the same in all directions. We need the continuous
kernel h(x) only at half-integer values for x/∆x.

Linear Interpolation
Linear interpolation is the classic approach to interpo-
lation. The interpolated points lie on pieces of straight
lines connecting neighboring grid points. In order to sim-
plify the expression, we use in the following normalized
spatial coordinates x̃ = x/∆x. We locate the two grid
points at −1/2 and 1/2. This yields the interpolation
equation

g(x̃) = g1/2 + g−1/2

2
+ (g1/2 − g−1/2)x̃ (25.18)

for |x̃| ≤ 1/2. The continuous interpolation mask for
linear interpolation is

h1(x̃) =
{

1−|x̃| |x̃| ≤ 1

0 otherwise
. (25.19)

Linear interpolation introduces serious distortions:
while low wavenumbers (and especially the mean value
k̃ = 0) are interpolated correctly, high wavenumbers are
slightly reduced in amplitude, resulting in some degree
of smoothing. Furthermore spurious high wavenumbers
are introduced, because the first derivative is discontin-
uous at the grid points.

Spline-Based Interpolation
Besides of its limited accuracy, linear and higher-order
polynomial interpolation has another significant disad-
vantage: the interpolated curve is already discontinuous
in its first derivative at the grid points. This is due to the
fact that, for each interval between grid points, another
polynomial is taken. Thus, only the interpolated function
is continuous at the grid points but not the derivatives.

Splines avoid this disadvantage by additional con-
straints for the continuity of derivatives at the grid points.
From the wide classes of splines, B-splines prove to be
most useful for interpolation. As B-splines are sepa-
rable, it is sufficient to discuss the properties of 1-D
B-splines. From the background of image processing,
the easiest access to B-splines is their convolution prop-
erty. The kernel of a P-order B-spline curve is generated
by convolving the box function P +1 times with itself:

βP(x̃) = Π(x̃)∗ . . .∗Π(x̃)︸ ︷︷ ︸
(P+1) times

(25.20)

with the Fourier transform (the transfer function)

β̂P(k̂) =
(

sin πk̃/2

(πk̃/2)

)P+1

. (25.21)

The B-spline function itself is not a suitable interpo-
lation function. The transfer function decreases too early,
indicating that B-spline interpolation performs too much
averaging, and the B-spline kernel does not meet the in-
terpolation condition (25.17) for P > 1. B-splines can
only be used for interpolation if the discrete grid points
are first transformed in such a way that a following con-
volution with the B-spline kernel restores the original
values at the grid points. This transformation is known
as the B-spline transformation and is constructed from
the condition:

gp(x) =
∑

n

cnβP(x − xn) with gp(xn) = g(xn) .

(25.22)

If centered around a grid point, the B-spline in-
terpolation kernel is unequal to zero for only three
grid points. The coefficients β3(−1) = β−1, β3(0) = β0,
and β3(1) = β1 are 1/6, 2/3, and 1/6, respectively. The
convolution of this kernel with the unknown B-spline
transform values cn should result in the original values
gn at the grid points.

The B-spline coefficients can be computed very ef-
ficiently by a recursive filter that is applied first in the
forward and then in the backward direction with the
following recursion [25.1]:

g′
n = gn − (2−√

3)(g′
n−1 − gn) ,

c′
n = g′

n − (2−√
3)(cn+1 − g′

n) . (25.23)

The whole operation takes only two multiplications and
four additions.

The B-spline interpolation is applied after the
B-spline transformation. In the continuous case this
yields the effective transfer function

β̂I (k̃) = sin4(πk̃/2)/(πk̃/2)4

(2/3+1/3 cos πk̃)
. (25.24)

Essentially, the B-spline transformation performs
an amplification of high wavenumbers (at the Nyquist
wavenumber k̃ = 1 by a factor 3). This compensates for
the smoothing of the B-spline interpolation to a large
extent.

For an image enlargement by a factor of two, the
intermediate points are given by a convolution with the
mask

[1 23 23 1]/48 . (25.25)
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25.1.4 Averaging and Noise Suppression

In a region with totally independent pixel gray values,
nothing can be recognized. Spatial coherency either in
one or two dimensions is required in order to recognize
lines and regions, respectively (Fig. 25.6). Averaging
within regions of constant gray values (an object of inter-
est) appears to be a central tool in image processing. In
addition, the deviation of the gray values of the pixel in
the neighborhood gives a quantitative measure as to how
well a region of constant gray values is encountered in
the neighborhood. This approach is very much the same
as that used for any type of measurements. A single mea-
surement is meaningless. Only repeated measurements
give us a reliable estimate both of the measured quantity
and its uncertainty. In image processing, averaging needs
not necessarily be performed by taking several images,
although this is a very useful procedure. Because spatial
information is obtained with images, spatial averaging
offers an alternative.

Many objects do not show a distinct constant gray
value, but we can still recognize them if the pattern they
show differs from the background. After suitable prepro-
cessing such an image can be converted into a feature
image. Then, the feature image can be handled in the
same way as a gray scale image for simple objects.

An important general question for smoothing is how
it can be computed efficiently. This question is of special

Fig. 25.6 Spatial coherency is required to recognize ob-
jects. No object can be recognized in a region that contains
only randomly distributed gray values

importance if we want to analyze coarse features in the
images that require averaging over larger distances and
thus large smoothing masks (or if we apply smoothing
to higher-dimensional images such as volumetric images
or image sequences).

While averaging works well within regions, it is
questionable at the edges of an object. When the fil-
ter mask contains pixels from both the object and the
background, averaged values have no useful meaning.
These values cannot be interpreted as an object-related
feature since this depends on the fraction of the object
pixels contained in the mask of the smoothing oper-
ator. Therefore, smoothing techniques that stop or at
least diminish averaging at discontinuities are discussed.
Such an approach is not trivial as it requires the detec-
tion of the edges before the operation can be applied.
Obviously, such advanced smoothing techniques need
to analyze the local neighborhoods in more detail and
adapt the smoothing process in one or the other way to
the structure of the local neighborhood.

Box Filters
The simplest type of averaging filters is the box filter or
running mean. It averages R × R pixel around a central
pixel and writes this average to the central pixel. This
procedure is repeated for all pixels of an image and is
mathematically a convolution of the image with an R × R
mask of equal coefficients with the value 1/R2.

The spatial variance of a 1-D box filter with R
coefficients is given by

σ2
x = 1

12
(R2 −1) . (25.26)

The standard deviation σ of smoothing increases ap-
proximately linearly with the size of the mask. The box
filter is separable. Higher-dimensional box filters result
from a cascaded application of the 1-D box filter in all
directions.

In the Fourier domain, convolution reduces to a mul-
tiplication of the Fourier transformed image ĝ(k) by
the Fourier transform of the smoothing mask, which
is known as the transfer function. The transfer function
of the box filter

Rr̂(k̃) = sin(Rπk̃/2)

R sin(πk̃/2)
(25.27)

is one at the wavenumber zero (preservation of the mean
value) and decreases for small wavenumbers proportion-
ally to the wavenumber squared:

Rr̂ ≈ 1− R2 −1

24
(πk̃)2 . (25.28)
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The attenuation of large wavenumbers is not steeper
than ∝ k̃−1. This is only a very weak attenuation of
high wavenumbers, which renders box filters useless for
many applications. With the exception of the 2 R box
filter (the box filter [1 1]/2), the transfer function does
not decrease monotonically; rather it shows significant
oscillations. This leads to the following disadvantages.
First, certain wavenumbers are eliminated:

2Rr̂(k̃) = 0 ∀k̃ = n

R/2
, 1 ≤ n ≤ R . (25.29)

Note that the transfer function for the highest wavenum-
ber k̃ = 1 vanishes only for even-sized box filters.
Second, the transfer function becomes negative in cer-
tain wavenumber ranges. This means a 180◦ phase shift
and a contrast inversion.

Because the box filter simply computes the aver-
age of R × R pixels (running mean), the variance of the
averaged pixel reduces to

σ ′

σ
= 1

R
, (25.30)

provided that the input pixels are statistically indepen-
dent (white noise).

A box filter is isotropic only for small wavenumbers.
Generally, it has the other significant disadvantage that
it is strongly nonisotropic. Structures along the axes
are attenuated much less than in the direction of the
diagonals.

The only big advantage of the box filter is that it
can be computed very efficiently as a recursive filter
according to the following equation:

g′
n = g′

n−1 + 1

2R +1
(gn+R − gn−R−1) . (25.31)

This recursion can be understood by comparing the
computations for the convolution at neighboring pixels.
When the box mask is moved one position to the right, it
contains the same weighting factors for all pixels except
for the last and the first pixel. Thus, we can simply take
the result of the previous convolution, (g′

n−1), subtract
the first pixel that just moved out of the mask (gn−R−1)
and add the gray value at the pixel that just came into
the mask (gn+R). In this way, the computation of a box
filter does not depend on its size; the number of compu-
tations is of O(R0). Only one addition, one subtraction,
and one multiplication are required per pixel.

Thus the box filter is a fast filter with bad prop-
erties. Cascading box filters avoid or at least diminish
many of the disadvantages of box filters. Since individ-
ual box filters can be computed independently of their

size, cascading them still remains independent of the
size. The computational effort can be balanced against
the remaining anisotropy and other distortions of the
filter.

Binomial Filter
Binomial filters are built by cascading the simplest and
most elementary smoothing mask

B = 1

2
[1 1] , (25.32)

taking the mean value of the two neighboring pixel.
Cascading this mask R times results in the filter mask

1

2R
[1 1] ∗ [1 1] ∗ . . .∗ [1 1]︸ ︷︷ ︸

R times

. (25.33)

Only odd-sized masks should be applied if the resulting
smoothed image should lie on the same grid.

Some examples of the resulting filter masks are:

B2 = [1 2 1]/4

B4 = [1 4 6 4 1]/16

B8 = [1 8 28 56 70 56 28 8 1]/256 . (25.34)

The coefficients of the mask are the values of the
binomial distribution. The iterative composition of the
mask by consecutive convolution with the 1/2[1 1] mask
is equivalent to the computation scheme of Pascal’s
triangle (Table 25.1).

The standard deviation σ of the binomial mask BR

is generally given by

σ2 = R

4
. (25.35)

Table 25.1 Computation of binomial coefficients using Pas-
cal’s triangle. R denotes the order of the binomial, f the
scaling factor 2−R, and σ2 the variance, i. e., the effective
width of the mask.

R f σ2

0 1 1 0

1 1/2 1 1 1/4

2 1/4 1 2 1 1/2

3 1/8 1 3 3 1 3/4

4 1/16 1 4 6 4 1 1

5 1/32 1 5 10 10 5 1 5/4

6 1/64 1 6 15 20 15 6 1 3/2

7 1/128 1 7 21 35 35 21 7 1 7/4

8 1/256 1 8 28 56 70 56 28 8 1 2

Part
D

2
5
.1



Data Analysis 25.1 Image Processing 1447

The standard deviation increases only with the square
root of the mask size. For high R the mask size (R +1
coefficients) is therefore much larger than the standard
deviation

√
R/2.

Two- and higher-dimensional binomial filters can be
composed by cascading filters along the corresponding
axes: The smallest odd-sized mask (R = 2) of this kind
is a 3 × 3 binomial filter in 2-D:

1

4

[
1 2 1

]
∗ 1

4

⎡
⎢⎣

1

2

1

⎤
⎥⎦= 1

16

⎡
⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎦

The transfer function of BR is then given as the R-th
power:

b̂R(k̃) = cosR(πk̃/2) , (25.36)

which can be approximated for small wavenumbers by

b̂R(k̃) ≈ 1− R

8
(πk̃)2 . (25.37)

The transfer function decreases monotonically and ap-
proaches zero at the largest wavenumber. The smallest
mask B2 has a halfwidth of k̃/2. For larger masks,
both the transfer function and the filter masks quickly
approach the Gaussian distribution with an equivalent
variance. Larger masks result in smaller half-width
wavenumbers according to the uncertainty relation.

The noise suppression factors of a 2-D binomial
mask for uncorrelated pixels is given by

σ ′

σ
= (2R)!

4R(R!)2 ≈
(

1

Rπ

)1/2 (
1− 1

8R

)
. (25.38)

A direct computation of a (R +1) × (R +1) filter
mask requires (R +1)2 multiplications and (R +1)2 −1
additions. If we decompose the binomial mask into ele-
mentary smoothing masks 1/2 [1 1] and apply this mask
in horizontal and vertical directions R times each, we
only need 2R additions. All multiplications can be han-
dled much more efficiently as shift operations. Despite
the efficient implementation of binomial smoothing fil-
ters BR by cascaded convolution with B, the number of
computations increases drastically because the smooth-
ing distance σ is only proportional to the square root
of R according to (25.35). Doubling σ quadruples the
number of computations.

Multistep Averaging
The problem of slow large-scale averaging originates
from the small distance between the pixels averaged in
the elementary B = 1/2 [1 1] mask. This problem can

be overcome if the same elementary averaging process
is used with more-distant pixels:

B2x = 1

4
[1 0 2 0 1], B2y = 1

4

⎡
⎢⎢⎢⎢⎢⎣

1

0

2

0

1

⎤
⎥⎥⎥⎥⎥⎦

. (25.39)

The subscripts in these masks denote the stepping
width and coordinate direction. The standard deviation
of these filters is proportional to the distance between
the pixels. The most efficient implementations are mul-
tistep masks along the axes. Because of separability,
this approach can be applied to image data of arbitrary
dimensions.

The problem with these filters is that they perform
subsampling. Consequently, they are no longer smooth-
ing filters for larger wavenumbers. Used individually,
these filters are not useful.

Cascaded multistep binomial filtering with recursive
step doubling

BR
2S−1x · · ·BR

8xB
R
4xB

R
2xB

R
x︸ ︷︷ ︸

S times

(25.40)

leads to a significant performance increase for large-
scale smoothing. For normal separable binomial
filtering, the number of computations is proportional to
σ2 [O(σ2)]. For multistep binomial filtering it depends
only logarithmically on σ [O(ld σ2)].

The standard deviation of smoothing is

σ2 = R/4+ R +4R + . . .+4S−1 R︸ ︷︷ ︸
S times

= R

12
(4S −1)

(25.41)

and the transfer function is
S−1∏

s=0

cosR(2s−1πk̃) . (25.42)

Thus, for S steps only RS additions are required,
while the standard deviation grows exponentially with
≈ √

R/12 ·2S.
With the parameter R, the degree of isotropy and

the degree of residual inhomogeneities in the trans-
fer function can be adjusted. For the most efficient
implementation with R = 2 (B2 = [1 2 1]/4 in each di-
rection), the residual side peaks at high wavenumbers
with maximal amplitudes up to 0.08 still cause signifi-
cant disturbances. With the next larger odd-sized masks
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1448 Part D Analysis and Post-Processing of Data

(R = 4, B4 = [1 4 6 4 1]/16 in each direction) these
residual side peaks at high wavenumbers are suppressed
well below 0.005.

Nonlinear Averaging
Linear smoothing filters cannot distinguish between
a useful feature and noise. This property can be best
demonstrated in the Fourier space (Fig. 25.7). White
noise is added to the image. Because of the linearity
of the Fourier transform, the Fourier transform of the
white noise adds directly to the Fourier transform of the
image.

Any linear filter operator works in such a way that
the Fourier transform of the image is multiplied by the
Fourier transform of the filter. The result is that at each
wavenumber the noise level and the image features are
attenuated by the same factor. Thus, nothing has im-
proved at all. The signal-to-noise ratio is just the same.
The noise level is reduced but so is the signal.

It is obvious that more-complex approaches than
linear filtering are required. Common to all these ap-
proaches is that in one or the other way the filters are
dependent on the context. Therefore a kind of control
strategy is an important part of adaptive filtering that
tells us which filter or in which way a filter has to be
applied at a certain point in the image. In the following
sections, some classes of nonlinear filter techniques are
discussed.

Problem-Specific Nonlinear Filters. This approach is
the oldest one and works if a certain specific type of
distortion is present in an image. A well-known exam-
ple is the median filter, which can excellently remove
single-distorted pixels with minimum changes to the im-
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Fig. 25.7 A linear smoothing filter does not distinguish between
useful features and noise in an image. It reduces the feature and the
noise amplitudes equally at each wave number so that the signal-to-
noise ratio remains the same

age features. This approach, of course, only works for
the type of distortion it is designed for. A median filter
is excellent for removing a single pixel that has a com-
pletely incorrect gray value because of a transmission or
data error; it is less well suited, however, to the reduction
of white noise.

Weighted Averaging. So far, each pixel was treated
equally assuming that the information it carries is of
equal significance. While this seems to be a reasonable
first approximation, it is certain that it cannot be gener-
ally true. Already during image acquisition, the sensor
area may contain bad sensor elements that lead to er-
roneous gray values at certain positions in the image.
Likewise, transmission errors may occur so that individ-
ual pixels may carry wrong information. In one way or
another we may attach a certainty measurement to each
data point.

Once a certainty measurement has been attached to
a pixel, it is obvious that standard convolution operators
are no longer a good choice. Instead, the weight we at-
tach to the pixel has to be considered when performing
any kind of operation with it. Each pixel enters the con-
volution sum with a weighting factor associated with it.
This kind of approach is called normalized convolution.
Thus, normalized convolution requires two images. One
is the image to be processed, the other is an image with
the weighting factors:

G′ = H ∗ (W · G)

H ∗ W
, (25.43)

where H is any convolution mask, G is the image to
be processed, and W is the image with the weighting
factors. A normalized convolution with the mask H
essentially transforms the set of the image G and the
weighting image W into a new image G′ and a new
weighting image W′ = H ∗ W, which can undergo fur-
ther processing. Standard convolution can be regarded as
a special case of normalized convolution where all pixels
are assigned the same weighting factor and a weighting
image is not required, since the factor remains constant.

Actually, this type of approach seems very natural to
a scientist or engineer, as they are used to qualifying any
data by a measurement error, which is then used in any
further evaluation of the data. Normalized convolution
applies this common principle to image processing.

The power of this approach is related to the fact that
there are varied possibilities for the definition of the cer-
tainty of the measurement; it does not only have to be
related to a direct measurement error of a single pixel. If
we are, for example, interested in computing an estimate
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of the mean gray value in an object, we could devise
a kind of certainty measurement that analyzes neigh-
borhoods and attaches low weighting factors where we
suspect an edge so that these pixel do not contribute
much to the mean gray value or feature of the object. In
a similar way, we could, for instance, also check how
likely the gray value of a certain pixel is if we suspect
some distortion by transmission errors or defective pix-
els. If the certainty measurement of a certain pixel is
below a critical threshold, it is effectively replaced by
a weighted value from the surrounding pixels.

Adaptive Filtering. Adaptive filters in the narrower
sense use a different strategy than normalized convo-
lution. Now, the filter operation itself is made dependent
on the neighborhood. Adaptive filtering can best be ex-
plained by a classical application, the suppression of
noise without significant blurring of image features. The
basic idea of adaptive filtering is that in certain neigh-
borhoods a smoothing operation can be applied without
blurring structures. If, for instance, the neighborhood is
flat, it can be assumed that this is an area within an ob-
ject of constant features and thus an isotropic smoothing
operation can be to this pixel to reduce the noise level.
If an edge is present in the neighborhood, some smooth-
ing is still possible, namely along the edge. In this way,
some noise is removed but the edge is not blurred. With
this approach, we need a kind of large filter set of di-
rectional smoothing operations. Because of the many
filters involved, it appears that adaptive filtering might
be a very computational-intensive approach; this is in-
deed the case if either the coefficients of the filter to be
applied have to be computed for every pixel or if a large
set of filters has to be used. With the discovery of steer-
able filters [25.2], however, adaptive filtering techniques
have become attractive and computationally much more
efficient.

With this approach a small set of base filters is
used to compute a set of filtered images. Then, these
images are interpolated using parameters that depend
on the adjustable parameters. In operator notation this
reads

H(α) =
P∑

p=1

f p(α)Hp (25.44)

where Hp is the p-th filter and f p(α) is a scalar
function of the steering parameter α. Two problems
must be solved to use steerable filters. First, and
most basically, it is not clear that such a filter base
Hp exists at all. Second, the relation between the

steering parameter(s) α and the interpolation coef-
ficients f p must be found. If the first problem is
solved, we mostly get the solution to the second for
free.

A simple example of a steerable filter is direc-
tional smoothing. A directional smoothing filter is to
be constructed with the following transfer function

ĥθ (k, φ) = f (k) cos2(φ− θ) . (25.45)

In this equation cylinder coordinates (k, φ) are used
in the Fourier domain. The filter in (25.45) is a polar
separable filter with an arbitrary radial function f (k).
This radial component provides an isotropic bandpass
filtering.

The steerable angular term is given by cos2(φ− θ).
Structures oriented into the direction θ remain in the
image, while those perpendicular to θ are completely
filtered out. The angular width of the directional filter is
±45◦.

Using elementary trigonometry it can be shown that
this filter can be computed from only two base filters in
the following way:

ĥθ (k, φ) = 1

2
+ 1

2
[cos(2θ)Ĥ0(k, φ)

+ sin(2θ)Ĥπ/4(k, φ)] (25.46)

with the filter base

ĥ0(k, φ) = f (k) cos2 φ ,

ĥπ/4(k, φ) = f (k) sin2(φ) . (25.47)

The two base filters are directed towards 0◦ and 45◦.
The directional filter ĥθ can be steered into any direction
between −90◦ and 90◦.

Using separable filters, a polar separable directional
filter can be approximated only in a limited wavenumber
range. Thus f (k) must be a bandpass filter. The following
filter set turns out to be a good approximation. It uses
only binomial filters along the axes (Bx and By) and
diagonals (Bx−y and Bx+y) with equal variance:

H0 = 1−B2R
x B2R

y − (B2R
x −B2R

y

)

2
,

Hπ/4 = 1−B2R
x B2R

y − (BR
x+y −BR

x−y

)

2
. (25.48)

For small wavenumbers the transfer function of the fil-
ter steered in the direction θ agrees with the required
form (25.45). Thus it is not surprising that this filter
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�� ��
Fig. 25.8 (a) Ring test image with an
amplitude of 100 superposed by zero
mean normal distributed noise with
a standard deviation of 10, 20, and 40
in three quadrants. (b) Image (a) after
two iterations of steerable directional
smoothing in the direction of constant
gray values

can be used well to remove noise in images with di-
rected gray value structures when this filter is steered
to smooth in the direction of constant gray values
(Fig. 25.8).

Nonlinear Diffusion Filters. In recent years, a whole
new class of image processing operators has been in-
vestigated, known as diffusion filters [25.3]. Diffusion
is a transport process that tends to level out concentra-
tion differences and thus work like a smoothing filter.
Diffusion processes govern the transport of heat, mat-
ter, and momentum. To apply a diffusion process to an
image, the gray value g is regarded as the concentration
of a chemical species. The elementary law of diffusion
states that the flux induced by a concentration difference
is against the direction of the concentration gradient and
proportional to it:

j = −D∇g , (25.49)

where the constant D is known as the diffusion coeffi-
cient. Using the continuity equation

∂g

∂t
+∇ j = 0 , (25.50)

the nonstationary diffusion equation is
∂g

∂t
= ∇(D∇g) . (25.51)

For the case of a homogeneous diffusion process (D
does not depend on the position), the equation reduces
to

∂g

∂t
= D∆g . (25.52)

The general solution to this equation is equivalent to
a convolution with a smoothing mask. A spatial Fourier
transform, which results in

∂ĝ(k)

∂t
= −D|k|2 ĝ(k) , (25.53)

reduces the equation to a linear first-order differential
equation with the general solution

ĝ(k, t) = exp(−D|k|2t)ĝ(k, 0) , (25.54)

where ĝ(k, 0) is the Fourier-transformed image at time
zero. Multiplication of ĝ(k, 0) in the Fourier space
with the Gaussian function exp(−|k|2/(2σ2

k )) with
σ2

k = 1/(2Dt) as given by (25.54) is equivalent to a con-
volution with the same function but of reciprocal width.
Thus,

g(x, t) = 1

2πσ2(t)
exp

(
− |x|2

4Dt

)
g(x, 0) . (25.55)

Equation (25.55) establishes the equivalence between
a diffusion process and convolution with a Gaussian
kernel. In the discrete case, the Gaussian kernel can be
replaced by binomial filters.

Given the equivalence between convolution and
a diffusion process, it is possible to adapt smoothing
to the local image structure by making the diffusion
constant dependent on the position (inhomogeneous dif-
fusion) and/or the direction (anisotropic diffusion).

To avoid smoothing of edges, it appears logical to
attenuate the diffusion coefficient there. Thus, the diffu-
sion coefficient is made dependent on the strength of the
edges as given by the magnitude of the gradient

D(g) = D(|∇g|) . (25.56)

Perona and Malik [25.4] used the following depen-
dency of the diffusion coefficient on the magnitude of
the gradient:

D = D0
λ2

|� g|2 +λ2
, (25.57)

where λ is an adjustable parameter. For small gradi-
ents |� g| � λ, D approaches D0; for high gradients
|� g| � λ, D tends to zero.
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As simple and straightforward as this idea appears,
it is not without problems. Depending on the func-
tional form of D on ∇g, the diffusion process may
become unstable, resulting even in steeping of the edges.
A safe way to avoid this problem is to use a regular-
ized gradient obtained from a smoothed version of the
image [25.3].

Inhomogeneous diffusion has one significant dis-
advantage: it stops diffusion completely and in all
directions at edges, leaving them noisy. Edges are, how-
ever, only blurred by diffusion perpendicular to them
while diffusion parallel to edges is even advantageous
since it stabilizes the edge.

An approach that makes diffusion independent of
the direction of edges is known as anisotropic diffusion.
With this approach, the flux is no longer parallel to the
gradient. Therefore, the diffusion can no longer be de-
scribed by a scalar diffusion coefficient as in (25.49).
Now, a diffusion tensor is required:

j = −D∇g = −
(

D11 D12

D12 D22

)(
∂g/∂x

∂g/∂y

)
. (25.58)

The properties of the diffusion tensor can best be
seen if the symmetric tensor is brought into its principal
axis system by a rotation of the coordinate system. Then,
(25.58) reduces to

j = −
(

Dx′ 0

0 Dy′

)(
∂g/∂x′

∂g/∂y′

)
= −

(
Dx′∂g/∂x′

Dy′∂g/∂y′

)
.

(25.59)

Now, the diffusion in the two directions of the axes
is decoupled. The two coefficients on the diagonal Dx′
and Dy′ are the eigenvalues of the diffusion tensor. In
analogy to isotropic diffusion, the general solution of
the anisotropic diffusion can be written

ĝ(x, t) = 1

2πσx′ (t)σy′ (t)
exp

(
− x′2

4Dx′ t

)

× exp

(
− y′2

4Dy′ t

)
g(x, 0) (25.60)

in the spatial domain, provided that the diffusion tensor
does not depend on the position.

This means that anisotropic diffusion is equivalent
to cascaded convolution with two 1-D Gaussian convo-
lution kernels that are steered into the directions of the
principal axes of the diffusion tensor.

If one of the two eigenvalues of the diffusion tensor
is significantly larger than the other, diffusion occurs

only in the direction of the corresponding eigenvector.
Thus the gray values are smoothed only in this direction.
Implementation details for nonlinear diffusion filters are
given in [25.3, 5].

25.1.5 Edge and Line Extraction

Averaging filters suppress structures with high
wavenumbers. Edge detection requires a filter opera-
tion that emphasizes the spatial changes in signal values
and suppresses areas with constant values. Deriva-
tive operators are suitable for such an operation in
the one-dimensional case. The first derivative shows
an extreme at the edge (maximal positive or negative
steepness), while the second derivative crosses zero
(vanishing curvature) where the edge has its steepest
ascent or descent. Both criteria can be used to detect
edges.

In higher dimensions the description of signal
change is more complex. In 2-D images edges, cor-
ners, lines, and local extremes can be distinguished
as relevant features for image processing. At an edge,
we have a large change of the signal value per-
pendicular to the direction of the edge, but in the
direction of the edge the change is low. However, if
the curvature perpendicular to the gradient is high, the
edge becomes a corner. A line is characterized by
low first- and second-order derivatives along the line
and a maximal curvature perpendicular to the direc-
tion of the line. Local extremes are characterized by
zero first-order derivatives, but large curvatures in all
directions.

In three dimensions, i. e., volumetric images, there
can be surfaces with a strong first-order change in the di-
rection perpendicular to the surface and low slopes and
curvatures in the two directions within the surface. At
an edge, there are low signal changes only in the direc-
tion of the edge, while at a corner the signal changes in
all directions. All the local features described in multi-
dimensional signals can be well represented with first-
and second-order derivatives.

First-Order Derivation, Gradient
A p-th-order partial derivative operator corresponds to
multiplication by (2πik)p in wavenumber space. The
first-order partial derivatives into all directions of a W-
dimensional signal form the W-dimensional gradient
vector:

∇ =
( ∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xW

)T ◦−• 2πik . (25.61)
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The magnitude of the gradient vector,

|∇| = ||∇||2 = (∇T∇)1/2 =
[

W∑

w=1

(
∂

∂xw

)2
]1/2

,

(25.62)

is invariant to rotation of the coordinate system and thus
a good measure for edge strength.

First-order discrete differences are the simplest ap-
proximation to compute the gradient vector. For the
first partial derivative in the x direction, the symmet-
ric difference is the most useful, with the convolution
mask

D2x = 1/2[1 0 −1] (25.63)

and the transfer function

d̂2x = i sin(πk̃x) . (25.64)

Second-Order Derivation, Curvature
Second-order derivatives can be used to detect edges as
zero crossings and lines and other second-order features
by measurement of the curvature. All possible com-
binations of second-order partial differential operators
of a W-dimensional signal form a symmetric W × W
matrix, known as the Hessian matrix:

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂2

∂x2
1

∂2

∂x1x2
. . . ∂2

∂x1xW

∂2

∂x1x2

∂2

∂x2
2

. . . ∂2

∂x2xW

...
...

. . .
...

∂2

∂x1xW

∂2

∂x2xW
. . . ∂2

∂x2
W

⎞
⎟⎟⎟⎟⎟⎟⎠

. (25.65)

It is always possible to find a coordinate transform R
into the principal coordinate system so that the Hessian
matrix becomes diagonal. In two dimensions this is

H′ =
⎛

⎝
∂2

∂x′2 0

0 ∂2

∂y′2

⎞

⎠ . (25.66)

The gradient has only one nonzero component in the
principal coordinate system. This is not the case for
curvatures. Generally, all curvatures are nonzero in the
principal coordinate system.

There are two curvature parameters that are invari-
ant to a rotation of the coordinate system. The first is
the trace of this matrix, i. e., the sum of the diagonal,
called the Laplacian operator or the mean curvature
and denoted by ∆:

∆ = tr H =
W∑

w=1

∂2

∂x2
w

◦−• −4πk2 . (25.67)

The second invariant is the Gaussian curvature, which is
equal to the determinant of the Hessian matrix:

det H = ∂2

∂x′2
∂2

∂y′2 = ∂2

∂x2

∂2

∂y2 −
(

∂2

∂x∂y

)2

.

(25.68)

The simplest discrete approximations of second-
order derivative filters are the following second-order
differences:

D2
x =

[
1 −2 1

]

L =
⎡
⎢⎣

0 1 0

1 −4 1

0 1 0

⎤
⎥⎦ . (25.69)

Regularized Edge Detection
The edge detectors discussed so far are still poor per-
formers, especially in noisy images. Because of their
small mask sizes, they are most sensitive to high
wavenumbers. At high wavenumbers there is often more
noise than signal in images. Thus an optimum edge de-
tector is tuned to the scale (wavenumber range) with the
maximum signal-to-noise ratio. Consequently, we must
design filters that perform a derivation in one direction
but also smooth the signal in all directions.

Smoothing is particularly effective in higher-
dimensional signals because it does not blur the edge
in all directions perpendicular to the direction of the
gradient. Derivative filters that incorporate smoothing
are also known as regularized edge detectors because
they result in robust solutions for the ill-posed problem
of estimating derivatives from discrete signals.

2 × 2 Cross-Smoothing Operator. The smallest cross-
smoothing derivative operator has the following 2 × 2
masks

1

2

[
1 −1

1 −1

]
and

1

2

[
1 1

−1 −1

]
. (25.70)

There is nothing that can be optimized with this small
filter mask. Because of the imperfect approximation, the
direction of the gradient computed with this operator has
errors of up to 5◦ at large wavenumbers (k̃ = 0.5) and
the computed magnitude of the gradient depends on the
direction of the edge [25.5].

Sobel Edge Detector. The Sobel operator is the smallest
difference filter with an odd number of coefficients that
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averages the image in the direction perpendicular to the
differentiation:

1

8

⎡
⎢⎣

1 0 −1

2 0 −2

1 0 −1

⎤
⎥⎦ ,

1

8

⎡
⎢⎣

1 2 1

0 0 0

−1 −2 −1

⎤
⎥⎦ . (25.71)

The errors in the magnitude and direction of the gra-
dient are similar to the 2 × 2 cross-smoothing difference
operator.

Optimized Regularized Edge Detectors. An optimized
regularized derivative operator with about a 10 times
lower error in the estimate of the direction of edges is
[25.6]:

1

32

⎡
⎢⎣

3 0 −3

10 0 −10

3 0 −3

⎤
⎥⎦ ,

1

32

⎡
⎢⎣

3 10 3

0 0 0

−3 −10 −3

⎤
⎥⎦ .

(25.72)

Similar optimizations are possible for larger-sized regu-
larized derivative filters [25.6].

25.1.6 Direction and Orientation

A local neighborhood could also contain more-complex
patterns than edges and constant regions. If it contains
oriented patterns, it is denoted as a simple neighborhood
or linear symmetry [25.7]. In 2-D images this could be
edges between objects of constant intensity, oriented
patterns or, in a space–time image, objects moving with
a constant velocity (Fig. 25.9). Although the three ex-
amples refer to entirely different image data, they have
in common that the local structure is characterized by
an orientation,

Simple Neighborhood in the Spatial Domain
A local neighborhood with ideal local orientation is char-
acterized by the fact that the gray value only changes in
one direction. In all other directions it is constant. If the
coordinate system is oriented along the principal direc-
tions, the gray values become a 1-D function of only
one coordinate. Generally, we will denote the direction
of local orientation with a unit vector n perpendicu-
lar to the lines of constant gray values. Then, a simple
neighborhood is mathematically represented by

g(x) = g(xTn) , (25.73)

where we denote the scalar product simply by xTn.
Equation (25.73) is also valid for image data with more

�

��

�

�

� �

�
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Fig. 25.9a–c Three different interpretations of local structures in
2-D images: (a) edge between uniform object and background;
(b) orientation of pattern; (c) orientation in a 2-D space–time image
indicating the velocity of 1-D objects

than two dimensions. The projection of the vector x onto
the unit vector n makes the gray values depend only on
a scalar quantity, the coordinate in the direction of n
(Fig. 25.10). The gradient lies in the direction of n.

Representation in the Fourier Domain
A simple neighborhood also has a special form in Fourier
space. If the whole image is described by (25.73), i. e.,
n does not depend on the position, then the Fourier
transform must be confined to a line. The direction of
the line is given by n:

g(xTn) ◦−• ĝ(k)δ[k−n(kTn)] , (25.74)

where k denotes the coordinate in the Fourier domain
in the direction of n. The argument in the δ function is
only zero when k is parallel to n. If (25.74) is restricted
to a local neighborhood around x0, this corresponds
to a multiplication of g(xTn) by a window function
w(x− x0) in the spatial domain. The size and shape
of the neighborhood is determined by the window func-
tion. A window function that gradually decreases to zero

��

��

� 
��

Fig. 25.10
Illustration of
a linear sym-
metric or simple
neighborhood.
The grey val-
ues depend only
on a coordinate
given by a unit
vector n
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diminishes the influence of pixels as a function of their
distance from the outer pixel. Thus,

w(x− x0) · g(xTn) ◦−•
ŵ(k)∗ ĝ(k)δ[k−n(kT n)] , (25.75)

where ŵ(k) is the Fourier transform of the window
function.

The limitation to a local neighborhood thus blurs the
line in Fourier space to a sausage-like shape. Because
of the reciprocity of scales between the two domains,
its thickness is inversely proportional to the size of the
window. Thus the accuracy of the orientation estimate
is directly related to the ratio of the window size to the
wavelength of the smallest structures in the window.

The Structure Tensor
A suitable representation should be able to determine
a unique orientation (given by a unit vector n) and to
distinguish constant neighborhoods from neighborhoods
without local orientation.

Such a representation can be introduced by the
following optimization strategy to determine the orienta-
tion of a simple neighborhood. The optimum orientation
is defined as the orientation that shows the least devi-
ations from the directions of the gradient. A suitable
measure for the deviation must treat gradients point-
ing in opposite directions equally. The squared scalar

Table 25.2 Eigenvalue classification of the structure tensor in 2-D images

Condition Rank(J) Description

λ1 = λ2 = 0 0 Both eigenvalues are zero. The mean squared magnitude of the gradient (λ1 +λ2) is zero. The
local neighborhood has constant values.

λ1 > 0, λ2 = 0 1 One eigenvalue is zero. The values do not change in the direction of the corresponding eigen-
vector. The local neighborhood is a simple neighborhood with ideal orientation (straight edge
or 1-D texture).

λ1 > 0, λ2 > 0 2 Both eigenvalues are unequal to zero. The gray values change in all directions. In the special
case of λ1 = λ2, we speak of an isotropic gray value structure as it changes equally in all
directions.

Table 25.3 Eigenvalue classification of the structure tensor in 3-D (volumetric) images

Condition Rank(J) Description

λ1 = λ2 = λ3 = 0 0 The gray values do not change in any direction; constant neighborhood.

λ1 > 0, λ2 = λ3 = 0 1 The gray values change only in one direction. This direction is given by the eigenvector
to the nonzero eigenvalue. The neighborhood includes a boundary between two objects
(surface) or a layered texture. In a space–time image: constant motion of a spatially
oriented pattern (planar wave).

λ1 > 0, λ2 > 0, λ3 = 0 2 The gray values change in two directions and are constant in a third (edge or extruded
texture). In a space–time image: constant motion of a spatially distributed pattern. The
eigenvector to the zero eigenvalue gives the direction of the constant gray values.

λ1 > 0, λ2 > 0, λ3 > 0 3 The gray values change in all three directions.

product between the gradient vector and the unit vector
representing the local orientation n meets this criterion:

(∇gTn)2 = |∇g|2 cos2 [(� (∇g, n)
]

. (25.76)

This quantity is proportional to the cosine squared of
the angle between the gradient vector and the orientation
vector and is thus maximal when ∇g and n are parallel
or antiparallel, and zero if they are perpendicular to each
other. Therefore, the following integral is maximized in
a two-dimensional local neighborhood:
∫

w(x− x′)
[∇g(x′)Tn

]2 d2x′ , (25.77)

where the window function w determines the size and
shape of the neighborhood around a point x at which
the orientation is averaged. The maximization problem
must be solved for each point x. Equation (25.77) can
be rewritten in the following way:

nT J n → max (25.78)

with

J =
∫

w(x− x′)[∇g(x′)∇g(x′)T]d2x′ ,

where ∇g∇gT denotes an outer (Cartesian) product. The
components of this symmetric 2 × 2 tensor, named the
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structure tensor, are

Jpq(x) =
∞∫

−∞
w(x− x′)

(
∂g(x′)
∂x′

p

∂g(x′)
∂x′

q

)
d2x′ .

(25.79)

These equations indicate that a tensor is an adequate
first-order representation of a local neighborhood. More-
complex structures such as structures with multiple
orientations cannot be distinguished.

By a rotation of the coordinate system, this can be
brought into a diagonal form. Then, (25.78) reduces to

J ′ = (n′
1, n′

2)

(
J ′

11 0

0 J ′
22

)(
n′

1

n′
2

)
. (25.80)

A unit vector n′ = (cos θ sin θ) in the direction θ

gives the values

J ′ = J ′
11 cos2 θ + J ′

22 sin2 θ .

Without loss of generality, we assume that J ′
11 ≥ J ′

22.
Then, it is obvious that the unit vector n′ = (1 0)T maxi-
mizes (25.80). The maximum value is J ′

11. In conclusion,
this approach not only yields a tensor representation
for the local neighborhood but also shows the way to
determine the orientation. Essentially, (25.78) consti-
tutes an eigenvalue problem. The eigenvalues λw and
eigenvectors ew of a 2 × 2 matrix are defined by

Jew = λwew . (25.81)

An eigenvector ew of J is thus a vector that is not
turned in direction by multiplication by the matrix J but
is only multiplied by a scalar factor, the eigenvalue λw.
This implies that the structure tensor becomes diagonal
in a coordinate system that is spanned by the eigenvec-
tors (25.80). For a symmetric matrix the eigenvalues are
all real and nonnegative, and the eigenvectors form an or-
thogonal basis. According to the maximization problem
formulated here, the eigenvector to the maximum eigen-
value gives the orientation of the local neighborhood.

Classification of Local Neighborhoods
The power of the tensor representation becomes appar-
ent if we classify the eigenvalues of the structure tensor.
The classifying criterion is the number of eigenvalues
that are zero. If an eigenvalue is zero, this means that the
gray values in the direction of the corresponding eigen-
vector do not change. The number of zero eigenvalues is
also closely related to the rank of a matrix. The rank of
a matrix is defined as the dimension of the subspace for
which Jk �= 0. The space for which is Jk = 0 is denoted

as the null space. The dimension of the null space is the
dimension of the matrix minus the rank of the matrix
and is equal to the number of zero eigenvalues. We will
perform an analysis of the eigenvalues for two and three
dimensions. In two and three dimensions, we can dis-
tinguish the cases summarized in Tables 25.2 and 25.3,
respectively.

In practice, it will not be checked whether the eigen-
values are zero but below a critical threshold that is
determined by the noise level in the image.

Orientation Vector
With the simple convolution and point operations
discussed in the previous section, we computed the com-
ponents of the structure tensor. In two dimensions, we
can readily solve the eigenvalue problem. The orien-
tation angle can be determined by rotating the inertia
tensor into the principal axes coordinate system. The
orientation angle is given by

tan 2θ = 2J12

J22 − J11
. (25.82)

Because tan 2θ is gained from a quotient, we can regard
the dividend as the y and the divisor as the x component
of a vector and can form the orientation vector o, as
introduced by Granlund [25.8]:

o =
(

J22 − J11

2J12

)
. (25.83)

The argument of this vector gives the orientation
angle and the magnitude a certainty measure for the
local orientation. The term orientation is used in all
cases where an angle range of only 180◦ is required. It
is not possible to distinguish between patterns that are
rotated by 180◦. Orientation is still, of course, a cyclic
quantity.

The orientation vector can be well represented as
a color image. It appears natural to map the certainty
measure onto the luminance and the orientation angle
as the hue of the color. Our attention is then drawn to
the bright parts in the images where we can distinguish
the colors well. The darker a color is, the more difficult
it becomes to distinguish the different colors visually.
In this way, our visual impression coincides with the
orientation information in the image.

Structure Operator and Coherency
The orientation vector reduces local structure to local
orientation. From three independent components of the
symmetric tensor only two are used. When we fail to
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observe an orientated structure in a neighborhood, we
do not know whether no gray value variations or dis-
tributed orientations are encountered. This information
is included in the not yet used component of the ten-
sor, J11 + J22, which gives the mean square magnitude
of the gradient. Consequently, a well-equipped struc-
ture operator also needs to include the third component.
A suitable linear combination is

s =
⎛
⎜⎝

J11 + J22

J22 − J11

2J12

⎞
⎟⎠ . (25.84)

This structure operator contains the two components of
the orientation vector and, as an additional component,
the mean square magnitude of the gradient, which is
a rotation-invariant parameter. Comparing the latter with
the magnitude of the orientation vector, a constant gray
value area and an isotropic gray value structure without
a preferred orientation can be distinguished. In the first
case, both squared quantities are zero; in the second only
the magnitude of the orientation vector. In the case of
a perfectly oriented pattern, both quantities are equal.
Thus their ratio seems to be a good coherency measure

�� ��

�� ��

Fig. 25.11a–d Demonstration of
the computation of the structure
tensor with the ring test pattern:
(a) ring without noise, (b) ring with
a signal-to-noise ratio of 2, (c) color
presentation of the structure tensor
computed from (a), (d) the same
from (b)

cc for local orientation:

cc =
√

(J22 − J11)2 +4J2
12

J11 + J22
= λ1 −λ2

λ1 +λ2
. (25.85)

The coherency ranges from 0 to 1. For ideal local orien-
tation (λ2 = 0, λ1 > 0) it is 1, for an isotropic gray value
structure (λ1 = λ2 > 0) it is 0.

A color representation of the structure tensor re-
quires only two slight modifications compared to the
color representation for the orientation vector. First, in-
stead of the length of the orientation vector, the squared
magnitude of the gradient is mapped onto the intensity.
Second, the coherency measure (25.85) is used as the
saturation. In the color representation for the orientation
vector, the saturation is always one. The angle of the
orientation vector is still represented as the hue.

In practice, a slight modification of this color rep-
resentation is useful. The squared magnitude of the
gradient shows variations too large to be displayed in
the narrow dynamic range of a display screen with only
256 luminance levels. Therefore, a suitable normaliza-
tion is required. The basic idea of this normalization
is to compare the squared magnitude of the gradient
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with the noise level. Once the gradient is well above
the noise level it is regarded as a significant piece of in-
formation. This train of thoughts suggests the following
normalization for the intensity I :

I = J11 + J22

(J11 + J22)+γσ2
n

, (25.86)

where σn is an estimate of the standard deviation of the
noise level. This normalization provides a rapid transi-
tion of the luminance from 1, when the magnitude of
the gradient is larger than σn, to 0 when the gradient is
smaller than σn. The factor γ is used to optimize the
display.

Implementation
The structure tensor can be computed straightforwardly
as a combination of linear convolution and nonlin-
ear point operations. The partial derivatives in (25.79)
are approximated by discrete derivative operators. The
integration weighted with the window function is re-
placed by a convolution with a smoothing filter that
has the shape of the window function. If we denote the
discrete partial derivative operator with respect to the
coordinate p by the operator Dp and the (isotropic)
smoothing operator by B, the local structure of a gray
value image can be computed with the structure tensor

Fig. 25.12 Color presentation of the energy tensor (compare
with Fig. 25.11c) [25.9]

operator

Jpq = B(Dp ·Dq) . (25.87)

The equation is written in an operator notation. Pixel-
wise multiplication is denoted by the dot to distinguish
it from successive application of convolution opera-
tors.

These operators are valid in images of any dimen-
sion W ≥ 2. In a W-dimensional image, the structure
tensor has W(W +1)/2 independent components, hence
three in 2-D, six in 3-D, and ten in 4-D images. These
components are best stored in a multichannel image with
W(W +1)/2 components.

The smoothing operations consume the largest num-
ber of operations. Therefore, a fast implementation must,
in the first place, apply a fast smoothing algorithm. A fast
algorithm can be established based on the general ob-
servation that higher-order features always show a lower
resolution than the features from which they are com-
puted. This means that the structure tensor can be stored
on a coarser grid and thus in a smaller image. A conve-
nient and appropriate subsampling rate is to reduce the
scale by a factor of two by storing only every second
pixel in every second row.

The accuracy of the orientation angle depends
strongly on the implementation of the derivative filters.
The straightforward implementation of the algorithm us-
ing the standard derivative filter mask (1/2)[1 0 −1] or
the Sobel operator results in surprisingly high errors,
with a maximum error in the orientation angle of more
than 7◦ at a wavenumber of k̃ = 0.7. The error depends
on both the wavenumber and the orientation of the local
structure. For orientation angles in the direction of axes
and diagonals, the error vanishes.

The error in the orientation angle can be suppressed
significantly if better derivative filters are used. The
little extra effort invested in optimizing the derivative
filters thus pays off in an accurate orientation estimate
(Fig. 25.11b). A residual angle error of less than 0.5◦ is
sufficient for almost all applications. The various deriva-
tive filters discussed for edge and line extraction give the
freedom to balance computational effort with accuracy.

Even with a low signal-to-noise ratio, the orientation
estimate is still correct if a suitable derivative operator
is used. With increasing noise level, the coherency de-
creases and the statistical error of the orientation angle
estimate increases (Fig. 25.11d).

Energy Tensor
Recently, a phase-invariant extension of the structure
tensor was proposed, named the energy tensor, E, de-
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fined as

E = ∇g ,∇gT − g , Hg

=
(

g2
x − ggxx gx gy − ggxy

gx gy − ggxy g2
y − ggyy

)
, (25.88)

where H is the Hessian matrix. The energy tensor can
be computed accurately using the filter optimization
techniques described in Sect. 25.1.5 if the second-order
derivative filters are computed by consecutive applica-
tion of first-order filters.

The energy tensor requires no averaging. Firstly,
this constitutes a significant saving in terms of number
of computing operations. Secondly, the energy tensor
gives better results. This can be demonstrated by com-
puting the structure tensor and energy tensor of the ring
test pattern in Fig. 25.11. While the averaging of the
structure tensor is not sufficient at large wavelengths
(small wavenumbers) close to the center of the ring
pattern, this effect does not show up in the energy
tensor (Fig. 25.12).

25.1.7 Local Wavenumber and Local Phase

Local structure is not only characterized by orientation
but also by a local scale that can be represent by a local
wavenumber, i. e., the number of periods of a struc-
ture per unit length. The determination of the amplitude,
phase, wavenumber, and orientation is, of course, a cen-
tral image processing task for any type of technique
delivering fringe patterns.

Phase
The key to determining the local wavenumber is the
phase of the signal. Consider the one-dimensional peri-
odic signal

g(x) = g0 cos(kx) . (25.89)

The argument of the cosine function is known as the
phase of the periodic signal

φ(x) = kx . (25.90)

Thus the phase is a linear function of the position and
the wavenumber. The wavenumber of the periodic signal
is given by the first-order spatial derivative of the phase
signal

∂φ(x)

∂x
= k . (25.91)

Hilbert Filter and Analytic Signal
The key to determining the phase is an operator that
delays the signal by a phase of 90◦. This opera-
tor would convert the g(x) = g0 cos(kx) signal into a
g′(x) = −g0 sin(kx) signal. Using both signals, the phase
of g(x) can be computed by

φ(g(x)) = arctan

(−g′(x)

g(x)

)
. (25.92)

As only the ratio of g′(x) and g(x) goes into (25.92),
the phase is indeed independent of amplitude. Together
with the signs of the two functions g′(x) and g(x), the
phase can be computed over the full range of 360◦.

Thus the phase of a signal is determined by a linear
operator that shifts the phase of a signal by 90◦. Such
an operator is known as the Hilbert filter H or Hilbert
operator H and has the transfer function

ĥ(k) =

⎧
⎪⎨

⎪⎩

i k > 0

0 k = 0

−i k < 0

. (25.93)

The magnitude of the transfer function is 1, as the am-
plitude remains unchanged. As the Hilbert filter has
a purely imaginary transfer function, it must have odd
symmetry to generate a real-valued signal. Therefore
positive wavenumbers are shifted by 90◦ (π/2) and neg-
ative wavenumbers by −90◦ (−π/2). A special situation
is given for zero wavenumber, for which the transfer
function is 0. A signal with zero wavenumber is a con-
stant and can be regarded as a cosine function with
infinite wavenumber sampled at the phase zero. Conse-
quently, the Hilbert-filtered signal is the corresponding
sine function at phase zero, i.e., zero.

Because of the discontinuity of the transfer function
of the Hilbert filter at the origin, its point spread function
is of infinite extent

h(x) = − 1

πx
. (25.94)

The convolution with (25.94) can be written

gh(x) = 1

π

∞∫

−∞

g(x′)
x′ − x

dx′ . (25.95)

This integral transform is known as the Hilbert trans-
form [25.10].

Because the convolution mask of the Hilbert filter
is infinite, it is impossible to design an exact discrete
Hilbert filter for arbitrary signals. This is only possible if
we restrict the class of signals to which it is applied. Thus
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the following approach is taken to design an effective
implementation of a Hilbert filter.

First, the filter should shift the phase by precisely
π/2. This requirement comes from the fact that we can-
not afford an error in the phase because it includes the
position information. A wavenumber-dependent phase
shift would cause wavenumber-dependent errors. This
requirement is met by any convolution kernel of odd
symmetry.

Second, the requirements for a magnitude of 1 can
be relaxed if the Hilbert filter is applied to a band-passed
signal. Then, the Hilbert filter must only show a mag-
nitude of one in the pass-band range of the bandpass
filter used. This approach avoids discontinuities in the
transfer function at the wavenumber 0 and thus results
in finite-sized convolution kernels. Optimized Hilbert
filters are discussed by Jähne [25.11].

A real-valued signal and its Hilbert transform can be
combined into a complex-valued signal by

ga = g − igh . (25.96)

This complex-valued signal is denoted as the analytic
function or analytic signal. According to (25.96) the
analytic filter has the point spread function

a(x) = 1+ i

πx
(25.97)

and the transfer function

â(k) =

⎧
⎪⎨

⎪⎩

2 k > 0

1 k = 0

0 k < 0

. (25.98)

Thus all negative wavenumbers are suppressed. Al-
though the transfer function of the analytic filter is real,
it results in a complex signal because it is asymmetric.
For a real signal no information is lost by suppressing
the negative wavenumbers. They can be reconstructed as
the Fourier transform of a real signal is Hermitian. The
analytic signal can be regarded as just another repre-
sentation of a real signal with two important properties.
The magnitude of the analytic signal gives the local
amplitude

|a|2 = g2 + g2
h . (25.99)

and the argument the local phase

φ = arg(a) = arctan

(−gh

g

)
. (25.100)

The original signal and its Hilbert transform can be
obtained from the analytic signal using (25.96) by

g(x) = [ga(x)+ g∗
a (x)]/2

gh(x) = i[ga(x)− g∗
a (x)]/2 . (25.101)

To determine the local wavenumber, the first spatial
derivative of the phase signal is computed (25.91). This
derivative has to be applied in the same direction as the
Hilbert or quadrature filter has been applied. However,
direct computation of the partial derivatives is not advis-
able, because of the inherent discontinuities in the phase
signal. A phase computed with the inverse tangent re-
stricts the phase to the main interval [−π, π[ and thus
inevitably leads to a phase wrapping from π to −π with
the corresponding discontinuities.

If only the local wavenumber is of interest, this prob-
lem can be avoided by computing the phase derivative
directly from the derivatives of g and gh [25.12]. The
result is

k = ∂

∂x
arctan(−gh/g) = gh∂g/∂x − g∂gh/∂x

g2 + g2
h

.

(25.102)

This procedure to compute the phase gradient also elim-
inates the need to use trigonometric functions and is,
therefore, significantly faster.

Phase in Higher-Dimensional Signals
and the Monogenic Signal

The concept of the analytic signal makes it possible to
extend the ideas of local phase into multiple dimen-
sions. The transfer function of the analytic operator uses
only the positive wavenumbers, i. e., only half of the
Fourier space. If we extend this partitioning to multiple
dimensions, we have more than one choice to partition
the Fourier space into two half-spaces. Instead of the
wavenumber, we can take the scalar product between
the wavenumber vector k and any unit vector n and sup-
press the half-space for which the scalar product kn is
negative:

â(k) =

⎧
⎪⎨

⎪⎩

2 kn > 0

1 kn = 0

0 kn < 0

. (25.103)

The unit vector n gives the direction in which the
Hilbert filter is to be applied. The definition (25.103) of
the transfer function of the analytic signal implies that
the Hilbert operator can only be applied to directionally
filtered signals. This results from the following consid-
erations. For one-dimensional signals we have seen that
a discrete Hilbert filter does not work well for small
wavenumbers. In multiple dimensions this means that
a Hilbert filter does not work well if k̂n � 1. Thus no
wavenumbers near an orthogonal to the direction of the
Hilbert filter may exist, in order to avoid errors.
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This fact makes the application of Hilbert filters and
thus the determination of the local phase in higher-
dimensional signals significantly more complex. It is
not sufficient to use isotropic band-pass-filtered images.
In addition, the band-pass-filtered images must be fur-
ther decomposed into directional components. At least
as many directional components as the dimensionality
of the space are required.

The extension of the Hilbert transform from a 1-D
signal to higher-dimensional signals is not satisfactory
because it can only be applied to directionally filtered
signals. For wavenumbers close to the separation plane,
the Hilbert transform does not work. What is really re-
quired is an isotropic extension of the Hilbert transform.

A vector-valued extension of the analytic signal
meets both requirements. It is known as the mono-
genic signal and was introduced to image processing
by Felsberg and Sommer [25.13]. The monogenic sig-
nal is constructed from the original signal and its Riesz
transform. The transfer function of the Riesz transform
is given by

ĥ(k) = i
k
|k| . (25.104)

The magnitude of the vector h is 1 for all values of k.
The Riesz transform is thus isotropic. It also has odd
symmetry because

ĥ(−k) = −ĥ(k) . (25.105)

The Riesz transform can be applied to a signal of any
dimension. For a 1-D signal it reduces to the Hilbert
transform.

For a 2-D signal the transfer function of the Riesz
transform can be written using polar coordinates as

ĥ(k) = i(cos θ, sin θ)T . (25.106)

The transfer function is similar to the transfer function
for the gradient operator (25.61). The convolution mask
or point spread function (PSF) of the Riesz transform is
given by

h(x) = − x
2π|x|3 . (25.107)

The original signal and the signal convolved by the Riesz
transform can be combined for a 2-D signal to the 3-D
monogenic signal as

gm(x) = (p, q1, q2)T (25.108)

with p = g, q1 = h1 ∗ g, and q2 = h2 ∗ g. The local am-
plitude of the monogenic signal is given as the norm of

the vector of the monogenic signal as in the case of the
analytic signal (25.99):

|gm|2 = p2 +q2
1 +q2

2 . (25.109)

The monogenic signal does not only give an estimate
for the local phase φ as the analytic signal does. The
monogenic signal also gives an estimate of the local
orientation θ by the following relations:

p = a cos φ ,

q1 = a sin φ cos θ ,

q2 = a sin φ sin θ . (25.110)

Therefore the monogenic signal combines the estima-
tion of local orientation and local phase. This is of high
significance for image processing because the two most
important features of a local neighborhood, the local ori-
entation and the local wavenumber can be estimated in
a unified way.

It is significantly more complex to compute the local
wavenumber from the monogenic signal, because there
are three signals in two dimensions. From (25.110) we
obtain two different equations for the phase:

φ1 = arccot

(
p cos θ

q1

)
, φ2 = arccot

(
p sin θ

q2

)
.

(25.111)

It is necessary to combine these equations because
each of them gives no result for certain directions. The
solution is use the directional derivative. When differ-
entiating the phase in the direction of the wavenumber
vector, the magnitude of the wavenumber vector is
obtained:

k = ∂φ

∂k
= cos θ

∂φ1

∂x
+ sin θ

∂φ2

∂y
. (25.112)

The terms cos θ and sin θ can be obtained from (25.110):

cos2 θ = q2
1

q2
1 +q2

1

and sin2 θ = q2
2

q2
1 +q2

1

. (25.113)

Then the magnitude of the wavenumber vector results in

k = p(q1x +q2 y)−q1 px −q2 py

p2 +q2
1 +q2

1

. (25.114)

The components of the wavenumber vector k =
(k cos θ, h sin θ) can be computed by combining
(25.114) and (25.112).

Quadrature Filters
Quadrature filters is an alternative approach to getting
a pair of signals that differ only by a phase shift of
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90◦ (π/2). It is easiest to introduce the complex form
of the quadrature filters. Essentially, the transfer func-
tion of a quadrature filter is also zero for kn < 0, like
the transfer function of the analytic filter. However, the
magnitude of the transfer function is not one but can be
any arbitrary real-valued function h(k):

q̂(k) =
{

2h(k) kn > 0

0 otherwise
. (25.115)

The quadrature filter thus also transforms a real-
valued signal into an analytical signal. In contrast to
the analytical operator, a wavenumber weighting is ap-
plied. From the complex form of the quadrature filter,
we can derive the real quadrature filter pair by observ-
ing that they are the part of (25.115) with even and odd
symmetry. Thus

ĝ+(k) = [q̂(k)+ q̂(−k)]/2 ,

ĝ−(k) = [q̂(k)− q̂(−k)]/2 . (25.116)

The even and odd part of the quadrature filter pair
show a phase shift of 90◦ and can thus also be used to
compute the local phase.

Quadrature filters can also be designed on the basis
of the monogenic signal. These quadrature filters have
one component more than the dimension of the signal.
The transfer function is

[ĥ(k), ikĥ(k)/|k|]T . (25.117)

The best-known quadrature filter pair is the Gabor
filter. A Gabor filter is a bandpass filter that selects a cer-
tain wavelength range around the center wavelength k0
using the Gauss function. The complex transfer function
of the Gabor filter is

ĝ(k) =
{

exp
(|k−k0|2σ2

x /2
)

kk0 > 0

0 otherwise
.

(25.118)

If |k0|σx > 3, (25.118) can be approximated by

ĝ(k) ≈ exp

(
−|k−k0|2 σ2

x

2

)
. (25.119)

Using the relations in (25.116), the transfer function for
the even and odd component are given by

ĝ±(k) =
[

exp

(
−|k−k0|2 σ2

x

2

)

± exp

(
−|k+k0|2 σ2

x

2

)]
. (25.120)

The point spread function of these filters is

g+(x) = cos(k0x) exp

(
−|x|2

2σ2
x

)
,

g−(x) = i sin(k0x) exp

(
−|x|2

2σ2
x

)
, (25.121)

or combined into a complex filter mask:

g(x) = exp(ik0x) exp

(
−|x|2

2σ2
x

)
. (25.122)

25.1.8 Multiscale Processing

The powerful concept of neighborhood operations is
only the starting point for image analysis. This class of
operators can only extract local features at scales of at
most a few pixels distance. It is obvious that images con-
tain information also at larger scales. To extract object
features at these larger scales, we need correspondingly
larger filter masks. The use of large masks, however, re-
sults in a significant increase in computational costs. If
we use a mask of size RW in a W-dimensional image
the number of operations is proportional to RW . Thus
a doubling of the scale leads to a four- and eightfold in-
crease in the number of operations in 2- and 3-D images,
respectively.

The explosion in computational cost is only the su-
perficial expression of a problem with deeper roots. The
more important question is at which scale can a certain
feature in an image be detected in an optimal way? This
scale depends, of course, on the characteristic scales
contained in the object to be detected. Optimal process-
ing of an image thus requires the representation of an
image at different scales.

If an N × N image is represented on a grid in the spa-
tial domain, we do not have any information at all about
the wavenumbers contained at that point in the image.
We know the position with an accuracy of the grid con-
stant ∆x, but the local wavenumber at this position may
be anywhere in the range of the possible wavenumbers
from 0 to N∆k = 1/∆x.

In the wavenumber representation, each pixel repre-
sents one wavenumber with a wavenumber resolution of
∆k = 1/(N∆x). However, any positional information is
lost, as one point in the wavenumber space represents
a periodic structure that is spread over the whole image.
Thus the positional uncertainty is N∆x.

This discussion shows that the representation of an
image in either the spatial or wavenumber domain con-
stitutes one of two opposite extremes. Either the spatial
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or the wavenumber resolution is maximal, but the resolu-
tion in the other domain is completely lost. A multiscale
image representation requires a type of joint resolution
that allows for a separation into different wavenum-
ber ranges (scales) but still preserves as much spatial
resolution as possible.

This can be done in the most efficient way in a multi-
grid representation. The basic idea is simple. While the
representation of fine scales requires the full resolution,
coarse scales can be represented at lower resolution. This
leads to a scale space with smaller and smaller images
as the scale parameter increases.

Gaussian Pyramid
If we want to reduce the size of an image, we can-
not just subsample the image by taking, for example,
every second pixel in every second line. This would
disregard the sampling theorem. For example, a struc-
ture that is sampled three times per wavelength in the
original image would only be sampled one and a half
times in the subsampled image and thus appear as an
aliased pattern. Consequently, we must ensure that all
structures that are sampled fewer than four times per
wavelength are suppressed by an appropriate smooth-
ing filter to ensure a properly subsampled image. This
means that size reduction must go hand in hand with
appropriate smoothing.

Generally, the requirement for the smoothing filter
can be formulated as

B̂(k̃) = 0 ∀k̃ p ≥ 1

rp
, (25.123)

where rp is the subsampling rate in the direction of the
p-th coordinate.

The combined smoothing and size reduction can be
expressed in a single operator by using the following
notation to compute the (q +1)-th level of the Gaussian
pyramid from the q-th level:

G(0) = G, G(q+1) = B↓2G(q) . (25.124)

The number next to the ↓ in the index denotes the
subsampling rate. The 0-th level of the pyramid is the
original image.

Repeated smoothing and subsampling operations re-
sult in a series of images called the Gaussian pyramid.
From level to level, the resolution decreases by a factor
of two; the size of the images decreases correspondingly.
Consequently, we can think of the series of images as
being arranged in the form of a pyramid, as illustrated
in Fig. 25.13.

Fig. 25.13 Gaussian pyramid

The pyramid does not require much storage space.
Generally, if we consider the formation of a pyramid
from a W-dimensional image with a subsampling factor
of 2 and M pixels in each coordinate direction, the total
number of pixel is given by

MW
(

1+ 1

2W
+ 1

22W
+ . . .

)
< MW 2W

2W −1
.

(25.125)

For a two-dimensional image, the whole pyramid needs
only one third more space than the original image, and
for a three-dimensional image only one seventh more.
The computation of the pyramid is equally effective. The
same smoothing filter is applied to each level of the pyra-
mid. Thus the computation of the whole pyramid only
needs 4/3 and 8/7 times more operations than for the
first level of a two-dimensional and three-dimensional
image, respectively.

The pyramid brings large scales into the range of
local neighborhood operations with small kernels. More-
over, these operations are performed efficiently. Once
the pyramid has been computed, neighborhood opera-
tions on large scales in the upper levels of the pyramid
are much more efficient than for finer scales because of
the smaller image sizes.

Part
D

2
5
.1



Data Analysis 25.1 Image Processing 1463

The Gaussian pyramid constitutes a series of low-
pass-filtered images in which the cut-off wavenumbers
decrease by a factor of two (an octave) from level to
level. Thus only the coarser details remain in the smaller
images (Fig. 25.13). Only a few levels of the pyramid
are necessary to span all possible wavenumbers. For an
N × N image we can compute at most a pyramid with
ldN +1 levels. The smallest image consists of a single
pixel.

Laplacian Pyramid
From the Gaussian pyramid, another pyramid type can
be derived, the Laplacian pyramid, which leads to a se-
quence of band-pass-filtered images. In contrast to the
Fourier transform, the Laplacian pyramid only leads to
a coarse wavenumber decomposition without a direc-

Fig. 25.14 Construction of the Laplacian pyramid (right column) from the Gaussian pyramid (left column) by subtracting
two consecutive planes of the Gaussian pyramid

tional decomposition. All wavenumbers, independent
of their direction, within the range of about an oc-
tave (a factor of two) are contained in one level of the
pyramid.

Because of the coarse wavenumber resolution, we
can preserve good spatial resolution. Each level of the
pyramid only contains matching scales, which are sam-
pled a few times (two to six) per wavelength. In this
way, the Laplacian pyramid is an efficient data struc-
ture that is well adapted to the limits of the product of
wavenumber and spatial resolution set by the uncertainty
relation.

In order to achieve this, we subtract two levels of
the Gaussian pyramid. This requires an upsampling of
the image at the coarser level. This operation is per-
formed by an expansion operator ↑2. The degree of
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expansion or upsampling is denoted by the figure af-
ter the ↑ in the index, in a similar notation as for the
reduction operator (25.124).

The expansion is significantly more difficult than
the size reduction as the missing information must be
interpolated. For a size increase of two in all directions,
first every second pixel in each row must be interpolated
and then every second row. Interpolation is discussed in
detail in Sect. 25.1.3. Using this notation, the generation
of the p-th level of the Laplacian pyramid can be written

L(p)= G(p)− ↑2 , G(p+1), L(P)= G(P) . (25.126)

The Laplacian pyramid is an effective scheme for
a bandpass decomposition of an image. The center
wavenumber is halved from level to level. The last im-
age of the Laplacian pyramid L(P) is a low-pass-filtered
image G(P) containing only the coarsest structures.

The Laplacian pyramid has the significant advantage
that the original image can be reconstructed quickly from
the sequence of images in the Laplacian pyramid by
recursively expanding the images and summing them.
The recursion is the inverse of the recursion in (25.126).
In a Laplacian pyramid with p+1 levels, the level p

(where the counting starts from zero) is the coarsest
level of the Gaussian pyramid. Then the level p−1 of
the Gaussian pyramid can be reconstructed by

G(P) = L(P), G(p−1) = L(p−1)+ ↑2 , G p .

(25.127)

This is just an inversion of the construction scheme for
the Laplacian pyramid. This means that, even if the
interpolation algorithms required to expand the image
contain errors, they affect only the Laplacian pyramid
and not the reconstruction of the Gaussian pyramid from
the Laplacian pyramid, as the same algorithm is used.
The recursion in (25.127) is repeated with lower levels
until level 0, i. e., the original image, is reached again. As
illustrated in Fig. 25.14, finer and finer details become
visible during the reconstruction process. Because of
the progressive reconstruction of details, the Laplacian
pyramid has also been used as a compact scheme for
image compression. Nowadays, more-efficient schemes
are available on the basis of wavelet transforms, but they
operate on principles that are very similar to those of the
Laplacian pyramid [25.14, 15].

25.2 Motion Analysis

25.2.1 General Considerations
on Motion Analysis

Image-based whole-field velocimetry methods are used
to measure the flow field of a fluid, based on the analysis
of an image sequence visualizing the flow under con-
sideration. A large number of different methods have
been developed and successfully applied during the past
two decades, with both camera/computer-hardware and
image processing algorithms being constantly improved
upon in terms of accuracy, spatial and temporal resolu-
tion, and dynamic range. In general, all these methods
estimate the flow velocity by determining the displace-
ments of some kind of image features in a number of
successive frames (at least two). In a computer vision
context, this displacement field is called the optical flow
f (x, t).

Computing optical flow based on motion analysis
in general is one of the major issues of computer vi-
sion, with applications not restricted to fluid flow but
including any kind of dynamic processes and scenes. In
addition, photogrammetrists use matching methods that
are closely related to motion analysis, e.g., to establish

correspondences between two stereo images to compute
a disparity map or to locate target patterns within an
image. Accordingly, there is a huge amount of meth-
ods, algorithms, and publications spread out through the
computer vision, photogrammetry and fluid mechanics
literature. The vast terminology for the different methods
might confuse the unfamiliar reader, particularly be-
cause notions like optical flow, image matching, image
correlation, and tracking are not always used consis-
tently by the different communities (or even within the
same community).

The methods differ in the following aspects:

• What kind of image features are used?

A1 Single particles, i. e., discrete features,
A2 particle patterns, i. e., patterns of discrete fea-

tures,
A3 continuous features.

• What kind of input data is used for the velocity
estimation?

B1 Spatial information, i. e., positions of features
in the image plane,
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Table 25.4 Examples of different approaches to image-based velocity analysis

Method Reference Features Data Calculation

Standard PIV Willert and Gharib [25.16], Westerweel [25.17] A2 B1,B3 C1

Correlation-based tracking,
correlation imaging
velocimetry

Fincham and Spedding [25.18] A2 B1,B3 C1

Image correlation velocimetry,
adaptive least-squares
matching

Tokumaru and Dimotakis [25.19], Gruen [25.20] A2,A3 B1,B3 C2

Multi-grid PIV with
deformable windows

Scarano and Riethmuller [25.21] A2 B1,B3 C1

Hybrid PIV/PTV Cowen and Monismith [25.22], Bastiaans et al. [25.23] A1,A2 B1,B3 C1,C3

Two-frame tracking Baek and Lee [25.24], Ohmi and Li [25.25] A1 B1,B3 C3

Four-frame tracking Hassan and Canaan [25.26], Malik et al. [25.27] A1 B1,B2,B3 C3

Kalman filtering Takehara et al. [25.28] A1 B1,B2,B3 C3

Optical flow techniques Jähne et al.[25.29] A2,A3 B1,B2,B3,B4 C2

B2 temporal information, i. e., more than two
frames are used,

B3 intensity, i. e., gray values of features,
B4 intensity gradients, i. e., local gray value dif-

ferences.

• What is the computational approach to solve the
motion correspondence problem?

C1 Cross-correlation,
C2 least-squares optimization (linear or nonlin-

ear),
C3 discrete tracking techniques (kinematic mod-

els, combinatorial optimization, Kalman fil-
ters).

Algorithms using almost any combination of im-
age features, input data, and calculation method can be
found in the literature. Some examples are compiled in
Table 25.4. A common classification is to divide the
methods into two major groups: region-based methods
and feature-based methods.

Region-based methods estimate the motion of gray
value patterns within small image patches, so-called
interrogation areas or interrogation windows. The
most common region-based method used in fluid-
mechanic applications is particle image velocimetry
(PIV) (Sect. 25.2.2), whereas in computer vision and
photogrammetry, optical flow techniques (Sect. 25.2.5)
and least-squares matching (Sect. 25.2.3) are frequently
used. Since in all these methods, the image is divided
into a regularly spaced array of interrogation windows,
the result is a displacement field on a regular grid (which
may be the pixel grid itself, as in optical flow methods
of computer vision).

In contrast, feature-based methods try to identify
single objects in the image, segment them from the
background, and follow their motion throughout an
image sequence. Thus, feature-based methods yield
randomly spaced velocity information, depending on
the distribution of objects in the image. The most
important feature-based method for flow visualization
is particle-tracking velocimetry (PTV) (Sect. 25.2.4),
where individual tracer particle images are the objects
to be tracked.

In general, both classes of methods have advantages
and disadvantages, which are outlined in the following
sections. Note that there are also hybrid methods that try
to combine the advantages of region- and feature-based
approaches, and consequently have better performance
in many cases.

To summarize, four important groups of meth-
ods can be distinguished: correlation-based analysis
(Sect. 25.2.2), least-squares matching (Sect. 25.2.3),
tracking techniques (Sect. 25.2.4), and optical flow
methods (Sect. 25.2.5). In the remainder of this section,
some general aspects of motion analysis, which apply
equally to all the different approaches, are outlined.

Dynamic Range, Sampling Theorem,
and Subpixel Accuracy

Dynamic Range. An important quantity characterizing
the potential of a motion estimator is its dynamic range
DR, which is defined as the ratio of the maximum to the
minimum displacement that can be measured:

DR = ξmax

ξmin
. (25.128)
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Obviously, a dynamic range as high as possible is
desirable, in particular with regard to the measurement
of turbulent flows, which may contain strong velocity
fluctuations.

The fundamental limits on the dynamic range
of a digital imaging method are related to the dis-
crete nature of the image data. The measurement of
large displacements is limited by the temporal sam-
pling theorem [25.29], while the measurement of small
displacements is limited by the maximum subpixel ac-
curacy that can be achieved, which in turn depends
on the sampling and quantization of the image inten-
sity [25.29]. Approaches to overcome the limitations of
large displacements and increase the dynamic range are
outlined below. If such an approach is used together
with a subpixel-accurate determination of small dis-
placements (see below), a dynamic range of 100–1000
can be achieved using standard equipment.

Sampling Theorem and Motion Correspondence. To
estimate an object’s velocity given two successive image
frames, the motion correspondence problem has to be
solved, i. e., a unique correspondence between two
images of the same object in the two successive frames
has to be established. This can only be achieved, if the
temporal sampling theorem is valid. In simple words,
the (temporal) sampling theorem (or Nyquist criterion)
states, that the motion between two images, i. e., the op-
tical flow f , should be less than half the smallest local
spatial scale λg,min of the image intensity g(x, t):

| f |∆t = | f | · (1 frame) <
1

2
λg,min , (25.129)

where ∆t is the time interval between two successive
images, in units of frames (thus, ∆t = 1), and f is the
optical flow in units of pixel/frame. The sampling theo-
rem puts a fundamental limit on the relation between the
size and intensity structure of an object and its motion,
i. e., on the relation between the spatial and temporal
intensity gradients. Given just two images, the motion
of an object can only be recovered unambiguously if
(25.129) is valid. In this case, the motion correspondence
problem can be solved. Otherwise, temporal aliasing
occurs [25.29], and the problem of motion estimation
becomes ill-posed, i. e., there is no unique solution.

As a consequence of the sampling theorem, there
is a maximum allowed displacement that can be recov-
ered by any region-based method. For example, consider
a differential optical flow technique (Sect. 25.2.5). In this
case, there has to be a unique relation between the spa-
tial and temporal gray value gradients. To estimate the

motion of a single particle with a symmetrical Gaus-
sian intensity distribution (as typical for PIV and PTV
particle images), the maximum allowed displacement
corresponds roughly to the standard deviation of the
Gaussian radius of the particle. As a second example,
for a quadratic PIV interrogation window of length L ,
the maximum displacement corresponds roughly to L/4,
assuming that the intensity distribution or particle den-
sity within the window is homogeneous and sufficiently
large. The latter result is known as the one-quarter rule in
the PIV literature [25.30]. Obviously, the smallest spa-
tial scale within a PIV interrogation window depends
on the particle distribution and density within that win-
dow. Generally, an optimal density of about 10 particles
per interrogation window is recommended in the PIV
literature. Assuming a homogeneous distribution, the
particles form a periodic intensity pattern of wavelength
λ = L/2. Hence, the one-quarter rule follows from the
sampling theorem. Note that these limits are not strict
but should be considered as more or less accurate esti-
mates, since the actual spatial frequency content of the
image depends on the particle distribution. The latter is
a stochastic quantity, with varying values for different
interrogation windows within one image.

The situation is a bit different for feature-based
tracking methods. As a simple example, if only one ob-
ject is visible in the image, its motion can be tracked with
the only restriction that it stays within the field of view,
since in any case two successive images of the object can
be related to each other unambiguously. In this case, the
wavelength of the spatial image structure corresponds
to the size of the image (or twice this size). However,
such a case is of limited practical importance, since there
will always be more than one object to be tracked. With
increasing object or particle density, the spatial image
scales become smaller and the motion correspondence
becomes more difficult, which again is a manifestation
of the sampling theorem. Still, tracking algorithms are
able to track motions violating the sampling theorem.
However, the latter is only possible, if further informa-
tion is used (apart from two successive images). For
example, a common assumption is that object trajec-
tories are smooth, i. e., the direction and speed of an
object does not change abruptly between two frames. In
this case, it is possible to use information from previous
frames as input to a motion model and predict the po-
sition of the object in the next frame by extrapolation.
If the model provides a good description of the actual
motion, much larger displacements can be handled com-
pared to approaches using only two frames without any
modeling.
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Subpixel Accuracy. The subpixel accuracy of a velocity
estimator determines the minimum displacement that
can be measured. Since a digital image provides a sam-
pled version of the original intensity distribution of the
physical image, with gray values defined on an inte-
ger grid (pixel positions), the position of an object, e.g.,
a particle image or the correlation peak resulting from
the cross-correlation of two PIV images, can only be
determined with an accuracy of ±0.5 pixel. To achieve
higher accuracy, some kind of subpixel interpolation has
to be carried out. One way to do this is to use a model of
the intensity distribution of the object and determine the
best fit of this model to the image data in a least squares
sense. The most common model in PIV and PTV is
a Gaussian distribution, since it provides a very good
approximation to both the image of a single tracer par-
ticle and the displacement peak in a PIV correlation. The
subpixel-accurate coordinates are introduced as param-
eters of the model and determined using a least-squares
algorithm.

Another common approach to achieve subpixel ac-
curacy in PIV and optical flow techniques is to warp the
original images according to an estimated flow model.
The warping is carried out iteratively, and a refined tech-
niques of the velocity field is computed in each iteration.
Since the warped image will generally be defined on
noninteger pixel positions, warping requires a precise
method to interpolate gray values; see, e.g., Sect. 25.1.3.

In applying subpixel interpolation, one should keep
the following considerations in mind. To compute
a subpixel-accurate position within an image, the infor-
mation contained in the image intensity, i. e., in the gray
values, is translated into geometric information, i. e.,
position in the image. This translation is based on cer-
tain assumptions concerning radiometric aspects of the
imaging process. One such assumption is the Gaussian
intensity distribution mentioned above. Further impor-
tant assumptions, which are often taken for granted, are
the linearity and homogeneity of the sensor and a ho-
mogeneous illumination. If any of these assumptions is
violated, subpixel accuracy will deteriorate or even be-
come meaningless. Thus, it is very important to take into
account the radiometric properties of the cameras and
illumination, if very high accuracy is required. For ex-
ample, if the cameras suffer from strong fixed pattern
noise, a radiometric correction should be applied to the
images. Even if the image data is perfect and all the
assumptions are valid, the result of the subpixel inter-
polation may still be biased. For example, one source
of bias in PIV evaluation is the so-called peak-locking
effect.

As a general limit, for typical 8 bit images with 256
gray levels, one can expect a (theoretical) maximum sub-
pixel accuracy of the order of magnitude of 0.01 pixel,
given optimal image data, a good object model, and
an unbiased estimator. Note that it may be very diffi-
cult to actually achieve such ideal circumstances in real
PIV or PTV applications, where measurement errors are
typically in the range of 0.05–0.2 pixel.

Hierarchical Multigrid Approaches
As explained in the previous section, the maximum
displacement that can be determined by region-based
approaches such as PIV and differential optical flow
methods is limited by the smallest spatial scales of the
underlying image structure. However, images also con-
tain information at larger scales than the neighborhood
size of the interrogation windows. The basic idea of it-
erative, hierarchical methods is to start the estimation of
the optical flow at the largest image scales, which en-
able the determination of large displacements in a first
iteration. This first estimation may be applied to warp
the second image back along the estimated displace-
ment field and refine the estimation at smaller spatial
scales. An efficient implementation of such a coarse-to-
fine strategy is a Gaussian image pyramid (Sect. 25.1.8),
which is basically a multigrid representation of an im-
age at different spatial scales. The efficiency of Gaussian
pyramids is due to the reduction of the linear image size
by a factor of two at each level of the pyramid. This
reduction makes the large-scale information in the im-
age available to small filter masks. However, at the same
time the image becomes increasingly blurred. Hence,
we have to take care in applying Gaussian pyramids to
PIV images, since the small particle images may soon be
completely smoothed out. Large-scale information can
only be obtained if there is a certain fraction of larger
particles in the image or the particle density varies lo-
cally. Hierarchical PIV approaches are often realized
by starting with large interrogation windows and itera-
tively decreasing the size of the interrogation windows
instead of decreasing the image size as in a Gaussian
pyramid.

Modeling of Displacement Fields
Given two successive images g0 = g(x, t0) and
g1 = g(x, t1) of a flow field, the displacement field ξ(x, t)
can be thought of as the transformation, or mapping, of
the spatial image intensity field from the first image to
the second. The optical flow is the time derivative of this
mapping: f (x, t) = ∂tξ(x, t). Within a local neighbor-
hood N centered at x0, the displacement field may be
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approximated by a Taylor expansion

ξ(x, t) = ξ(x0, t)+ (x− x0)∇ξ(x0, t)

+ 1

2! [(x− x0)∇]2 ξ(x0, t)+ . . .

Taking into account only the first-order terms, the
equivalent formulation for the optical flow reads

f (x, t) =
(

a1 a2

a3 a4

)(
x − x0

y − y0

)
+
(

a5

a6

)
(25.130)

= A(x− x0)+ t . (25.131)

In this first-order approximation, the displacement field
consists of a constant shift t and a linear (affine) deforma-
tion of the local neighborhood, described by the matrix
A. Note that in such a formulation, the spatial derivatives
of the flow field are introduced as parameters:

a1 = ∂ fx

∂x
, a2 = ∂ fx

∂y
,

a3 = ∂ fy

∂x
, a4 = ∂ fy

∂y
. (25.132)

This offers the possibility to estimate spatial velocity
gradients without performing explicit differentiation of
the velocity field. Thus, important hydromechanic quan-
tities like the in-plane vorticity ωz = ∂x fy − ∂y fx and
the rate-of-strain tensor S can be directly estimated,
since

A =
(

0 −ωz
2

ωz
2 0

)
+S , (25.133)

with

S =
(

∂x fx
1
2 (∂y fx +∂x fy)

1
2 (∂y fx +∂x fy) ∂y fy

)
. (25.134)

Similar to this spatial modeling of the displacement
fields, the temporal evolution of the motion of a single
particle along its Lagrangian trajectory around the point
x0 may be approximated using a Taylor expansion in
time:

ξ(x0, t) = ξ(x0, t0)+v(t − t0)+ 1

2
a(t − t0)2 + . . .

(25.135)

This kind of modeling is frequently applied in particle-
tracking algorithms, see Sect. 25.2.4.

A more-detailed discussion of the modeling of flow
fields is given by Jähne et al. [25.29].

Confidence Measures, Validation
and Postprocessing

As any measurement technique, the result of a velocity
estimation should not only supply the velocity field, but
also a measure of confidence. To enable a reliable in-
terpretation of the velocity field, gross errors have to be
detected and removed. The optical flow methods dis-
cussed in Sect. 25.2.5 yield confidence measures as an
integral part of the result. In PIV, typically the ratio of the
tallest to the second tallest correlation peak is used to de-
tect unreliable measurements. Based on such confidence
measures, questionable measurements are detected and
removed from the velocity field, which is typically done
in a postprocessing step after the velocity field has been
computed. However, in iterative methods, where the
results strongly depend on the quality of the velocity
estimates in previous iterations, the validation should be
done after each iteration.

After the erroneous vectors have been removed, the
resulting gaps in the velocity field may be filled by apply-
ing an interpolation technique, e.g., adaptive Gaussian
windowing (AGW) [25.31]. Such interpolation tech-
niques can also be used to interpolate the randomly
distributed velocity vectors resulting from a PTV tech-
nique to a regular grid. Basically, the interpolation
corresponds to a convolution of the velocity field us-
ing a special convolution kernel, e.g., a Gaussian in the
AGW. To account for the varying uncertainty of the com-
puted velocity vectors, a normalized convolution may by
computed, where pixels with suspicious information (as
indicated by their confidence measure) are given a low
weighting factor in the convolution sum. For further in-
formation on interpolation and convolution techniques,
refer to [25.29].

3-D Motion Estimation
Most of the methods discussed in this chapter refer to the
case of 2-D motion estimation within a plane, i. e., the
image plane. However, all of these methods can easily
be extended to the case of 3-D motion estimation within
a volume in space. From an algorithmic point of view,
there is no principal difference between, e.g., comput-
ing a cross-correlation in 2-D and in 3-D. Optical flow
algorithms and tracking methods can also be applied to
the 3-D case simply by adding a further dimension. The
challenge in 3-D motion estimation is rather a techno-
logical one: the acquisition of 3-D image data. Most
approaches to 3-D velocity measurement are based on
stereoscopic or multi-view imaging using two or more
views of the same flow scene to recover the 3-D velocity
field. The most prominent method applied to flow meas-
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urement is stereoscopic PIV [25.32]. Some 3-D PTV
approaches are discussed in Sect. 25.2.4.

The basic new ingredient of 3-D methods as com-
pared to 2-D methods is a geometric camera calibration.
This calibration is necessary because perspective ef-
fects have to be taken into account in the evaluation
of stereo images. The task of the stereo evaluation is
to establish stereoscopic correspondences between two
different views of the same scene. Thus, in addition to
the motion correspondence problem (temporal corres-
pondence), the stereo correspondence problem (spatial
correspondence) has to be solved: given two views of
the same scene, e.g., a flow field visualized by tracer
particles, a unique correspondence between the particle
images in the two views has to be found. The camera
calibration provides the geometric relationship between
the two views, the so-called epipolar geometry. If this
relationship is known, the stereo correspondence prob-
lem can be solved much easier and faster. Further, the
calibration also provides the necessary geometric in-
formation to compute the 3-D position of an object by
triangulation of two or more views.

Stereo algorithms can be implemented very ef-
ficiently and transparently in terms of projective
geometry. The (projective) geometry of multiple views
and its implications for motion analysis are extensively
discussed in the computer vision and photogrammetry
literature [25.33]. Camera calibration is a classic topic
of photogrammetry [25.34].

Another powerful but experimentally very elaborate
approach is holographic imaging [25.35]. More infor-
mation on this and other 3-D flow visualization methods
can be found in [25.36].

25.2.2 Correlation-Based Velocity Analysis

In this section, approaches to velocity analysis based
on the computation of cross-correlation coefficients are
discussed. These approaches belong to the region-based
methods. The focus is on particle image velocimetry
(PIV), which is the method that is most often applied in
fluid mechanics applications.

Standard Digital PIV Analysis

Basic Principle. Particle image velocimetry (PIV) is
a technique to determine the two-component displace-
ment vectors of tracer particle patterns in a 2-D plane
(light sheet) within a flow. The result is a snapshot of
the Eulerian flow field. The displacements are found
by dividing two subsequent frames of a PIV sequence,

g1 = g(x, t1) and g2 = g(x, t2) into interrogation win-
dows, typically of a size of 16 × 16 or 32 × 32 pixels,
and computing the cross correlation coefficient r(x, s)
of two corresponding windows

r(x, s) =
〈
g1(x′)g2(x′ − s)

〉
〈
g2

1(x′)
〉 · 〈g2

2(x′)
〉 , (25.136)

using the abbreviation

〈
a(x′)

〉=
∞∫

−∞
w(x− x′)a(x′)d2x′ ,

where the weight function w(x− x′) represents the size
of the interrogation window and it is assumed that the
local mean values over the interrogation windows have
been subtracted from g1 and g2. The correlation coeffi-
cient is computed for a given 2-D range of displacements
s of the interrogation window, resulting in a so-called
correlation plane.

Computation of Velocity. Because the direct evaluation
of the cross correlation coefficient (25.136) is computa-
tionally very expensive, it is usually computed using fast
Fourier transform (FFT) methods, because in Fourier
space the double summation is replaced by a simple
pointwise multiplication. Once the correlation plane has
been determined, the correct displacement is given by
the maximum correlation peak. Thus, the optical flow is
approximated as

f (x, t) ≈ 1

∆t
arg max r(x, s) , (25.137)

where ∆t is the time difference between the two
successive images. Subpixel accuracy is achieved by
centroiding or fitting a Gaussian to the correlation peak.
Usually, in both methods only three neighboring cor-
relation values in each direction are used (three-point
estimators). Depending on the image quality and the
evaluation method, the accuracy of the displacement
estimation is of the order of 0.01–0.1 pixels and the dy-
namic range of the method is of the order of 100–1000.

Velocity Postprocessing. To compute an instantaneous
velocity field, interrogation windows are distributed
on a regular grid and evaluated by cross-correlation.
The result is the instantaneous Eulerian velocity field.
Since PIV is a statistical evaluation method, this vector
field will contain a certain amount of spurious vec-
tors (outliers), which result from interrogation windows
containing an insufficient number of particle images.
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These outliers have to be removed prior to any fur-
ther evaluation of the velocity field. Some methods for
outlier removal and interpolation of the resulting gaps
are mentioned in Sect. 25.2.1. After this postprocessing,
higher-order quantities such as vorticity, divergence, or
rate of strain may be computed.

Limitations. The basic approach to PIV as discussed in
this section suffers from a number of shortcomings that
limit the accuracy, dynamic range, and spatial resolution
of PIV. The main origin of these shortcomings is the
fixed, finite size or shape of the interrogation window
used in the correlation analysis, which effectively acts
as a spatial low-pass filter on the estimated velocity
field. Another source of error stems from the spatial
discretization of digital particle images. In detail, the
following limitations exist:

• In-plane loss of pairs. Particles may enter or leave
the finite interrogation window between subsequent
frames, in particular those that are moving faster
than the mean velocity within the window. Thus, fast
particles will not contribute to the correlation peak,
since they do not have a matching partner within the
interrogation window. This results in a bias of the
estimated velocity towards lower values.• Velocity gradients. Spatial velocity gradients within
the interrogation window also contribute to the
in-plane loss of pairs and thereby reduce the signal-
to-noise ratio in the correlation plane since not all
particles within an interrogation window correlate
equally well due to their nonuniform motion. As
a rule of thumb, the degradation of the PIV result
becomes significant if the displacement of tracer par-
ticles due to local flow gradients gets larger than the
image diameter of the particles.• Out-of-plane loss of pairs. Particles may enter or
leave the light sheet along the optical axis during the
time of two successive exposures. Such particles are
only visible in one of the images and do not have
a matching partner. Again, this results in a reduction
of the signal-to-noise ratio. The out-of-plane loss of
pairs is a principal physical limitation of PIV that
can only be overcome by adjusting the experimental
parameters, e.g., the thickness of the light sheet or
the frame rate of the cameras.• Computational aspects. To reduce the computational
load, the correlation is often computed in the Fourier
domain using FFT methods. However, the neces-
sary assumption of the periodicity of the image data
within the interrogation window introduces inaccu-

racies compared to a direct spatial cross-correlation,
which is, in principal, more accurate [25.37].• Peak-locking or pixel-locking. The discrete nature
of the PIV images introduces a bias towards in-
teger displacements in the subpixel evaluation of
the displacement peak. Peak-locking is the result
of a biased subpixel estimation, if the input data
(i. e., correlation values) is distributed asymmetri-
cally around the maximum peak. The degree of
peak-locking depends on the size of the particle
images.

Apart from peak-locking, all these limitations are
a consequence of the finite extent of the interrogation
windows. The size of the window is given by a trade-off
between dynamic range and accuracy on one hand and
spatial resolution on the other hand. Large interrogation
windows can resolve large motions and provide good
accuracy due to a high signal-to-noise ratio, given that
the window contains only weak velocity gradients. Large
windows are also more robust to outliers. On the other
hand, smaller windows provide a better spatial resolution
and are less affected by velocity gradients, e.g., shear
flows or strong vortices. However, to enable a reliable
evaluation of the cross-correlation, the windows must
contain a sufficient number of particle images and thus
must have a certain minimum size, which depends on
the particle density.

The limitations imposed by fixed interrogation win-
dows can also be explained by looking at the spatial
Taylor expansion of the velocity field (25.130). The stan-
dard PIV approach can only compute a straight shift of
the interrogation windows between two frames. The vel-
ocity field within the interrogation window is assumed
to be constant. This corresponds to a zeroth-order ex-
pansion of the velocity field. Linear effects like rotation,
shear and dilation, or higher-order deformations are not
accounted for. Due to the spatial averaging over the in-
terrogation window, flow scales smaller than the window
size cannot be recovered.

To summarize, the accuracy, spatial resolution, and
dynamic range of the standard PIV method are coupled
by the size of the interrogation window. The perfor-
mance of PIV depends on three main factors: particle
size and density, the size of the interrogation win-
dow, and the presence of velocity gradients. Particle
size and density can be controlled during the setup of
the experiment and are not discussed further. Recom-
mendations for optimal settings are given in the PIV
literature [25.30]. In the following sections, some ad-
vanced PIV methods are discussed. The goal of these
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methods is to overcome the limitations of the stan-
dard PIV approach to increase the accuracy, resolution,
and dynamic range. Towards this end, the latter three
performance measures have to be decoupled. Most of
the advanced methods rely on the following three ma-
jor ideas: iterative methods instead of a single-pass
evaluation to refine the solution, hierarchical multigrid
approaches to resolve both large and small motions,
and higher-order approximations of the velocity field
to account for velocity gradients and higher-order de-
formations.

Advanced Digital PIV Analysis
Multiple-Pass Interrogation with Window Shifting.
To reduce the in-plane loss of pairs, a discrete integer
window offset determined in a first interrogation pass
is introduced before doing a second interrogation using
the shifted window. The increased number of matched
particle pairs results in an increased signal-to-noise
ratio of the correlation peak. Iterations of the window
shifting may be carried out until the displacement de-
termined in the final iteration is below one pixel. Due
to the discrete window shifting, the result still suffers
from peak-locking, which can be reduced by applying
continuous window shifting.

Correlation-Based Tracking. In the standard PIV ap-
proach, the interrogation windows in the first and second
frame are of the same size and at the same loca-
tion within the image. This is the major reason for
the low-velocity bias error due to the in-plane loss of
pairs. A simple modification to eliminate this error
is to use a larger interrogation window in the second
frame, centered around the smaller window in the first
frame [25.18]. In this case, the correlation coefficient
has to be computed directly in the spatial domain for all
displacements of the small window within the large win-
dow. Fincham et al.[25.18] have termed this approach
correlation image velocimetry to distinguish it from the
standard correlation-based interrogation using equally
sized windows. In a number of more-recent references,
the approach using differently sized windows is referred
to as correlation-based tracking, since the particle pat-
tern defined by the small interrogation window is tracked
within a search area defined by the large interrogation
window.

Multiple Passes with Decreasing Window Size. The
optimal interrogation window size for PIV depends on
the local flow conditions and the local seeding particle
density, which means that it is rarely constant from

one region of the flow to another. Thus, instead of us-
ing fixed window sizes, the size of the window should
be dynamically adapted to the local flow conditions.
A simple way to implement this idea is to refine the
correlation interrogation in an iterative way by start-
ing with large windows and decreasing the window
size during the course of the iterations [25.38]. In such
a multigrid approach, the maximum in-plane displace-
ment is decoupled from the interrogation window size,
which increases the dynamic range without decreasing
the spatial resolution. The displacements computed with
larger interrogation windows can be used as predic-
tions for further interrogations with smaller windows
to shift the windows according to the prediction be-
fore the next interrogation is calculated. Thus, a high
signal-to-noise ratio can be maintained also with small
interrogation windows. The size of the interrogation
windows may be decreased down to a correlation of
single particles.

Since in such iterative methods, the quality of the
final result depends on the results of previous itera-
tions, in particular the first iteration, validation methods
(Sect. 25.2.1) should be applied after each iteration.
Since the first iteration will generally be a standard PIV
correlation and as such suffer from all the basic lim-
itations mentioned above, more-sophisticated methods
have been developed for the first iteration [25.39].

Deformable Windows and Higher-Order Approxima-
tions of the Displacement Field. In the standard PIV
evaluation, interrogation windows with fixed size and
shape are used, and the velocity field is assumed to be
constant within the windows, which is a zeroth-order
approximation of the velocity field (Sect. 25.2.1). To ac-
count for variations of the velocity within the windows
due to velocity gradients and higher-order effects, de-
formations of the interrogation windows of the particle
images have to be considered, corresponding to a higher-
order approximation of the velocity field. Towards this
end, [25.40, 41] introduced the particle image distor-
tion technique: they use fixed interrogation windows,
but apply an iterative deformation of the images to com-
pensate for in-plane loss of pairs. In each iteration, the
image area within the interrogation window is deformed
according to the displacement field calculated in the pre-
vious iteration. To compute the deformed images, some
kind of image interpolation has to be applied, e.g., bilin-
ear interpolation or spline interpolation (Sect. 25.1.3).
Care has to be taken in the interpolation step not to spoil
the accuracy gain due to the window deformation with
an inaccurate interpolation scheme. A further advantage
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of the window deformation using image interpolation is
the possibility to introduce continuous window offsets,
which reduces the peak-locking effect.

Second-Order Correlation. As an effective method to
suppress false correlation peaks and amplify the cor-
rect one, [25.42] introduced the second-order correlation
method, which is simply a multiplication of the corre-
lation plane of an interrogation area by the correlation
plane of one or more neighboring interrogation areas
(overlapping by, e.g., 50%). Thus, it is a correlation of
the correlation. Since any peak that does not appear in
both planes is eliminated, correlation anomalies are sup-
pressed, resulting in more-reliable and accurate velocity
estimates. Unlike statistical PIV postprocessing methods
to remove spurious vectors, which rely on the accuracy
and similarity of neighboring vectors, errors are directly
eliminated in the correlation data. The second-order cor-
relation may be applied together with any of the PIV
methods discussed in this section to validate the results
already during the computation step.

Super-Resolution PIV, Hybrid PIV/PTV Methods.
Clearly, the maximum amount of information contained
in a PIV image is the motion of the individual particles.
The number of particles within an image, i. e., the par-
ticle density, defines the maximum spatial resolution of
the velocity field that can be achieved. The approach
of particle-tracking velocimetry (Sect. 25.2.4) is to actu-
ally exploit the maximum resolution by identifying the
individual particles and measuring their motion. How-
ever, such an approach is not feasible in the evaluation
of PIV images, since the particle density is much higher
than in PTV images, which gives rise to ambiguities
in the temporal correspondence analysis of the particle
motion that cannot be resolved without further infor-
mation. The idea of super-resolution PIV respectively
hybrid PIV/PTV is to combine PIV and PTV. The goal
is to increase the spatial resolution and accuracy of PIV
and overcome the averaging and gradient-biasing effects
of the standard PIV interrogation by tracking the individ-
ual particles within the interrogation windows [25.22].
The initial result of a coarse PIV interrogation is used
in a predictor step to direct the particle-matching al-
gorithm in the right direction and thereby reduce the
size of the search area. With a smaller search area lo-
cated near the correct match partner, the probability
of ambiguities is reduced. If a unique match is estab-
lished, the particle velocity is calculated from the two
positions in the successive images by a finite-difference
scheme.

3-D/3-C PIV
Several methods have been proposed to extend the
PIV technique towards measurements of full three-
component (3-C) vectors respective measurements
within a three-dimensional (3-D) volume in space.
Stereoscopic PIV is the method that is applied most
frequently.

Stereoscopic PIV. Stereoscopic PIV enables the meas-
urement of 3-C vectors within a plane in space. Hence,
it is a 2-D/3-C method. For a review, see [25.32]. The
basic idea is to use two cameras observing the light
sheet, and to compute the third velocity component
(i. e., the out-of-plane motion) from the disparity map
between the two particle images. Further, stereoscopic
PIV also offers the possibility to eliminate perspective
errors, which may contaminate the in-plane measure-
ments if perspective effects are strong, i. e., when the
lateral dimensions of the object plane are comparable to
its depth.

Stereoscopic PIV systems can be arranged in two
configurations. Translational systems have parallel op-
tical axes, whereas in rotational systems the two optical
axes are arranged enclosing a convergence angle α.
Both arrangements have advantages and disadvan-
tages [25.32].

3-C vectors are obtained by mapping the displace-
ments from each image plane to the object plane and
combining them to obtain the third component. There
are three different approaches [25.32]:

1. Geometric reconstruction. A priori knowledge of
the complete recording geometry is necessary. This
information is used to perform an explicit ray trac-
ing of the projection rays. This method is tedious
and not very accurate, since the necessary geomet-
ric parameters (e.g., stereo baseline, depth of the
measurement plane) often cannot be measured with
sufficient accuracy.

2. 2-D calibration. A calibration is performed using
one image of a calibration target, which has to coin-
cide exactly with the plane of the light sheet during
flow measurements. A general polynomial transfor-
mation (typically up to second or third order to
account for lens distortions) between the object plane
and the image planes of the two cameras is estimated,
based on the known correspondences between ob-
ject and image points of the calibration target. The
final step of determining the 3-C velocity uses recon-
struction equations that still require some knowledge
of the geometry such as the separation between the
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lenses, the object distance, or the angular orientation
of the cameras to the object plane.

3. 3-D calibration. A full 3-D geometric camera
calibration is performed, using several images of
translated calibration planes. To compute 3-C vec-
tors, explicit knowledge of the system geometry is
not required. General higher-order polynomial trans-
formations are also frequently applied in the 3-D
calibration. Instabilities related to overparameter-
ization might be introduced if the measurements
are noisy, since typically ≈ 40 free parameters
are calibrated for each camera. The application of
photogrammetric pinhole-camera models and self-
calibration methods in stereoscopic PIV is a rather
recent development [25.43].

Defocusing PIV. [25.44] introduced defocusing PIV as
a method to obtain 3-D/3-C velocity fields. A volume
illumination is applied, and the defocus principle is used
to identify three-dimensional particle locations. Pereirra
et al.[25.45] use a similar technique to obtain full 3-D
information. A volumetric cross-correlation is computed
to estimate the velocity field.

Multiplane Stereoscopic PIV. The idea of multiplane
stereoscopic PIV is to use several light sheets in differ-
ent depths to obtain flow information from a number
of different planes within a 3-D volume. The planes
may be illuminated either simultaneously or sequen-
tially. In the former case, several stereo camera setups
are used to acquire the images. For details, see [25.46].
A recent variant of multiplane stereoscopic PIV is the
XPIV method [25.47]. It combines stereoscopic PIV,
multisheet illumination and defocusing PIV. The latter
is applied to separate the different depth planes which
are all projected simultaneously into the same camera.

Photogrammetric PIV. Pereirra et al. [25.48] describe
a photogrammetric PIV system. The principle is simi-
lar to that of a 3-D particle-tracking velocimetry setup
(Sect. 25.2.4). Three cameras are used to acquire images
of the flow. The 3-D particle positions are reconstructed
by triangulation, based on a geometric camera calibra-
tion that is performed prior to the flow measurements.
The 3-D/3-C flow field is obtained by computing the
volumetric cross-correlation of the particle positions in
subsequent frames. The only difference between 3-D
particle-tracking and photogrammetric PIV is that the
former tracks single particles in 3-D, whereas the lat-
ter computes the cross-correlation of 3-D interrogation
areas, i. e., volumetric, spatial particle patterns.

Holographic PIV. In contrast to all the methods
discussed so far, holographic PIV [25.35] requires
a volumetric illumination with coherent light to record
holograms of the flow. The 3-D/3-C flow field is re-
covered by interrogating the holograms with coherent
light beams. In principle, holographic PIV is superior
to all the other methods, but the experimental setup and
the data evaluation is very complex. For these reasons,
holographic PIV does currently not provide the ability
to collect large data bases for statistical analyses. Hence,
the application of holographic PIV is limited to relatively
simple flow configurations.

Further Reading
Different PIV methods are reviewed by Adrian [25.49].
Information on autocorrelation PIV including film-
based acquisition and optical evaluation methods can
be found in Kean and Adrian [25.50, 51]. The theory
of cross-correlation PIV is developed in [25.52]. The
fundamentals of digital PIV are discussed by Wester-
weel [25.17], Willert and Gharib [25.16] and in the
books by Westerweel [25.53] and Raffel et al. [25.30].
The latter gives a large number of references to further
information on PIV.

25.2.3 Least-Squares Matching

Basic Principle
Least-squares matching is an alternative approach to
maximizing the cross-correlation between two image
patches to estimate the interframe motion. Like corre-
lation techniques, it also belongs to the region-based
methods of motion estimation. Given two successive
images g1 = g(x, t1) and g2 = g(x, t2), an interrogation
window is selected in the first frame, and a larger search
area centered around this interrogation window is se-
lected in the second frame. The displacement of the
interrogation window is calculated by minimizing a dis-
tance measure that quantifies the dissimilarity between
two image regions. This distance measure is given by the
sum-of-squared differences (SSD, the least squares) of
the gray values within the interrogation window between
the first and second frame:

d(x, s) =
∞∫

−∞
w(x− x′)[g1(x′)− g2(x′ − s)]2d2x′ ,

(25.138)

where the weight function w(x− x′) represents the size
of the interrogation window. The optical flow is approx-
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imated as

f (x, t) ≈ 1

∆t
arg min d(x, s) , (25.139)

where ∆t is the time difference between the two succes-
sive images. Subpixel accuracy may be achieved using
the same methods as in correlation-based approaches,
e.g., by fitting a Gaussian function to the (inverse)
displacement peak.

Least-squares matching is also referred to as image
correlation velocimetry [25.19], adaptive least-squares
correlation [25.20], and the minimum quadratic differ-
ences (MQD) method [25.54].

Relation to Other Region-Based Approaches
Least-squares matching is closely related to the other
region-based approaches of motion estimation, namely
optical flow techniques, and correlation-based analysis.

The similarity between least-squares matching and
differential optical flow techniques (Sect. 25.2.5) is re-
vealed by approximating g2(x′ − s) in (25.138) by
a Taylor expansion about s = 0 and skipping all
terms above first order. The resulting expression is
the gradient-based formulation of the optical flow.
For the case of subpixel motions, the equivalence of
first-order differential optical flow estimation and least-
squares matching using bilinear interpolation is shown
by [25.55].

Gui and Merzkirch [25.54, 56] discuss the rela-
tion between least-squares matching and correlation
techniques. Expanding the squared term in (25.139)
shows that this expression contains the (negative) cross-
correlation coefficient as used in a PIV evaluation. But in
addition, there is a term accounting for nonuniformities
in the particle image distribution and nonuniform illumi-
nation. Gui and Merzkirch [25.56] show that this term
is responsible for the superiority of the least-squares
matching as compared to conventional correlation-based
methods.

Advanced Least-Squares Matching
The real strength of least-squares matching is revealed
if it is combined with similar advanced evaluation
methods as outlined in Sect. 25.2.2. In particular, iter-
ative approaches using a coarse-to-fine strategy together
with a higher-order approximation of the displacement
field (Sect. 25.2.1) are widely used and show good
performance [25.19]. Radiometric effects, i. e., inten-
sity changes, may also be included in the model. The
implementation of such methods within a general least-
squares parameter estimation framework provides the

ability to estimate higher-order quantities such as vor-
ticity and rate of strain directly. Towards this end, these
quantities are introduced as parameters to be estimated
within the least-squares optimization. Thus, no explicit
finite differences of the velocity field, which are very
sensitive to numerical errors and noise, have to be calcu-
lated. In addition, no explicit differentiation of the image
data is required. In most cases, only a few parameters
are extracted from the optimization (e.g., six parameters
for a general 2-D affine transformation), but many more
data points are used for the computation (e.g., 256 pixels
in a 16 × 16 interrogation window). Due to this strong
overdetermination, the least-squares matching is quite
immune to image noise. Furthermore, the precision and
the reliability of the estimated parameters can be easily
assessed by a covariance analysis of the least-squares re-
sult. Overparameterization can be avoided by selecting
a model of the displacement fields based on the signifi-
cance of the computed parameters. Various models can
be used for different interrogation windows, making the
method adaptive to the local image structure.

25.2.4 Tracking Techniques

In this section, various tracking techniques are reviewed.
Tracking techniques are feature-based motion estima-
tion algorithms: individual tracer particle images are the
features that are tracked throughout an image sequence.
The most important tracking method used to measure
fluid flow is particle-tracking velocimetry (PTV). This
method is described in detail in this section.

Besides PTV, some region-based methods are
also referred to as tracking techniques: correlation-
based tracking, least-squares tracking or Kanade–Lucas
tracker (KLT) tracking. The latter methods consider the
particle or gray value patterns within the interrogation
windows as features that are tracked. Correlation-based
tracking ([25.18] and Sect. 25.2.2) is a special PIV eval-
uation mode, where the interrogation window in the
second frame (the search window) is larger than that
in the first frame, as opposed to the standard correlation-
based interrogation mode of PIV where both windows
are of equal size. Thus, in this method, the correlation
coefficient is used as a tracking criterion. Least-
squares tracking was discussed in Sect. 25.2.3. The KLT
tracker [25.57] is a differential optical flow method
based on the early work of Lucas and Kanade [25.58]
(Sect. 25.2.5). This method performs tracking in the
sense that individual image regions are automatically
selected and tracked if the image structure within the
regions is sufficient to compute the optical flow.
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Particle-Tracking Velocimetry
Basic Principle. The basic idea of particle-tracking vel-
ocimetry (PTV) is to identify single particle images
within an image, segment them from the background,
and track them along their trajectories throughout an im-
age sequence. Thus, PTV is a feature-based approaches
to motion estimation. A PTV algorithm has to solve
the following three tasks: particle segmentation, deter-
mination of particle position, and particle matching,
i. e., solving the motion correspondence problem. Since
in most applications, the particles cannot be distin-
guished from each other reliably (e.g., by their shape
or intensity), the latter task is the most difficult, due to
ambiguities occurring especially for high particle den-
sities. Thus, the particle density in PTV applications is
generally lower than in PIV applications.

As a simple example, consider the following optimal
conditions for PTV: high image contrast (bright particles
on a dark, noise-free background), low particle density,
and small interframe motions. The latter two conditions
imply that the mean distance between particles is much
larger than their interframe motion. In this case, a very
simple PTV approach may be used: segment the par-
ticles by a global intensity threshold, determine their
position by centroiding, and match each particle in the
first frame to that particle in the second frame that is
closest to its position in the first frame (i.e., its nearest
neighbor). However, since the optimal conditions as-
sumed above will rarely be given in real applications,
more-sophisticated algorithms are needed, in particular
for particle segmentation (see below) and the tracking
(Sect. 25.2.4).

Differences to Region-Based Approaches. The major
differences between tracking techniques and region-
based motion estimation are the following:

• Temporal scope: To increase the reliability of the
tracking, most PTV techniques use more than two
successive frames to establish the temporal corres-
pondences (multi-frame tracking), e.g., three-frame
tracking [25.59], four-frame tracking [25.26], five-
frame tracking [25.60]. Note that there are also
two-frame tracking techniques [25.24] as well as
techniques that try to find the optimal set of trajec-
tories by taking into account their complete (visible)
length within a global optimization [25.61]. Most
correlation-based approaches and least squares tech-
niques try to establish a matching between only two
frames, while in optical flow techniques, more than
two frames may also be used, e.g., for a more-

accurate computation of temporal gradients or to
stabilize the results by temporal smoothing [25.62].• Particle density and spatial resolution: Since PTV
aims at identifying individual particles and finding
corresponding match partners in the next frame, the
particle density is generally lower than in PIV, which
results in a lower spatial resolution of the underlying
flow field. On the other hand, the resolution given
by the particle seeding is fully exploited without any
averaging effects as in PIV (Sect. 25.2.2), and there-
fore with a higher accuracy. For example, the motion
of two particles located within one PIV interrogation
window can be resolved individually. Thus, the local
spatial resolution is higher than in PIV.• Spatio-temporal distribution of velocity vectors:
Feature-based approaches compute the Lagrangian
representation of a flow field, i. e., the result of such
algorithms is a set of trajectories of the tracked
objects. Thus, the velocity information is given
at random locations depending on the tracer dis-
tribution and density. In contrast to region-based
methods, no dense, instantaneous flow field defined
on a regular grid is computed (which is the Eulerian
representation of a flow field). On the other hand,
tracking methods allow the motion of individual
particles to be followed in time, enabling e.g., a La-
grangian study of diffusion, which is not possible
using PIV results.• Large motions: Since feature-based methods do not
exploit the relation of spatial and temporal intensity
gradients for velocity estimation, they are less sensi-
tive to violations of the sampling theorem. Thus,
feature-based methods are more suitable for the
handling of larger motions, given that the motion
correspondence problem can be solved using one of
the advanced methods outlined below.

Particle Segmentation. In the particle segmentation
step, a decision has to be made for each pixel of the
image, whether it belongs to a particle or to the image
background. Thus, for an image g(x, t), the segmented
image gs(x, t) is given by the following operation:

gs(x, t) =
{

1 : g(x, t) ∈ object(particle)

0 : g(x, t) ∈ image background
.

(25.140)

The result of the segmentation is a binary image in which
the particle images are marked with the value 1 and the
background is marked with the value 0.
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Particle segmentation is rather difficult because most
particle images do not have a bimodal gray value his-
togram. Therefore, a simple segmentation by a global
intensity threshold is not feasible. Particle images do
not have a uniform (mean) gray value for the following
reasons:

• Image noise: Image noise introduces false positives
and false negatives, especially in the segmentation
of low-contrast particles.• Motion blur: While small and slow particles are im-
aged as bright circular spots, the shape of the image
of a faster particle is elongated in the direction of
its motion due to the integration time of the camera.
Faster particles cover a larger area in the image, i. e.,
the irradiance is distributed over a larger number of
pixels. Thus, faster particles have a lower intensity
and may appear as faint objects with gray values
close to the image background.• Inhomogeneous illumination: Several factors may
contribute to an inhomogeneous illumination of the
images, e.g., the general intensity distribution of the
light source, glow of dirty water, or particles reflect-
ing light to their neighbors. In particular, for 3-D
applications using a volume illumination, inhomo-
geneities have to be taken into account.• Out-of-focus imaging: In applications with volume
illumination, particles may be out-of-focus, which
reduces the image contrast.

As a result of all these factors, the (mean) gray val-
ues of particle images vary locally and may cover the
complete range from the background noise level to the
saturation of the sensor. Many authors have pointed out
that the particle segmentation is one of the most crucial
steps in a PTV algorithm, since it is the dominating fac-
tor controlling both the reliability and the accuracy of
the tracking [25.63].

Another difficulty is introduced by overlapping par-
ticles. Especially in 3-D applications using volume
illumination, particle images may partly overlap, or par-
ticles may be completely occluded by others. Particle
occlusion is a principal physical limitation of 3-D tech-
niques using a volume illumination. A trade-off has to
be made between the seeding density (i. e., spatial reso-
lution of the flow field) and the depth of view. Different
techniques to resolve overlapping particle images are
discussed by [25.64, 65].

Particle Position. Once the particle images have been
segmented from the background, various methods are
available for the subpixel-accurate determination of

the position of individual particles: centroiding, least
squares fits, e.g., in the form of a Gaussian three-point
estimator as applied in PIV, fit of extended models tak-
ing into account the motion of the particles or template
matching by cross-correlation.

The performance of the different methods depends
on the properties of the images, e.g., particle size
and density, particle contrast, and image noise. In
general, errors in the determination of the particle po-
sitions are introduced by the discretization, noise in
the signal (photon shot noise), and noise related to
the image acquisition. The discretization errors for typ-
ical particle images are of the order of magnitude
of 0.01–0.1 pixel [25.29]. Wernet and Pline [25.60]
show that the Cramer–Rao lower bound for the er-
ror in determining the position of a Gaussian-shaped
particle is 0.015 pixel. In practical applications with
additional noise sources related to the image acquisi-
tion, the mean centroid estimation error is generally
larger (0.1–0.2 pixel). If highest accuracy is desired,
the bias towards integer positions becomes important
(peak-locking as discussed in Sect. 25.2.2). In this case,
iterative weighted least-squares methods have to be
applied to compute an unbiased estimate.

Computation of Velocity. If a unique particle match is
found, a first-order approximation of the particle’s vel-
ocity may be computed by subtracting the positions of
the particle in the two successive frames and dividing
by the frame period of the camera. Assuming that the
latter is given free of error, the absolute error in estimat-
ing the particle displacement is

√
2 times the particle

position error. Therefore, errors of individual velocity
vectors may be higher than in PIV. However, Wernet
and Pline [25.60] have shown that better accuracy than
with PIV can be achieved by averaging the PTV results
over an area of the size of a typical PIV interrogation
window. Higher-order finite differences or spline fits to
particle trajectories may also be used to achieve a better
quality of the velocity results. Further, the errors in the
particle positions of two nearby particles in successive
frames are typically highly correlated. The systematic
error cancels out in the difference of the two positions.
Hence, the error in the velocity estimation will be lower
then the conservative estimate given above.

Velocity Postprocessing. Techniques to remove outliers
in the velocity field and interpolate the resulting gaps as
well as techniques to interpolate randomly spaced data
to a regular grid have been mentioned in Sect. 25.2.1.
Similar techniques may be applied to PTV data, where
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outliers have to be defined relative to a particle trajectory.
Malic and Dracos [25.66] present dedicated interpola-
tion schemes for three-dimensional velocity fields from
scattered data using Taylor expansions. Besides the in-
terpolation to regular grids, the final PTV results (i. e.,
the flow trajectories) enable a Lagrangian analysis of the
flow field.

Limitations. An important parameter describing the
difficulty of particle tracking is the particle spacing
displacement ratio rp [25.27]:

rp = Λ0

Λt
, (25.141)

where Λ0 is the average distance between the particles
and Λt is the average particle displacement between two
successive frames. Tracking is easy, if rp � 1. In this
case, even simple nearest-neighbor approaches such as
the one described above may yield good results. The
tracking difficulty increases for rp ≈ 1, and tracking
becomes virtually impossible for rp � 1. In the lat-
ter case, the probability of ambiguities in the particle
matching is very high. The motion correspondence prob-
lem cannot be solved if no additional information about
the particles or their motion (e.g., size, shape, color,
intensity, direction of motion) is available. The funda-
mental reason is the violation of the sampling theorem
(Sect. 25.2.1) in the case of high particle density and
large motion.

Thus, for a given particle density, the tracking diffi-
culty is related to the maximum possible displacement
between two frames, which depends on the frame rate,
image magnification, and the flow field under inves-
tigation. For a reliable tracking, Λt should be small,
i. e., the frame rate of the camera should be suffi-
ciently high. On the other hand, a larger Λt yields
a lower relative error of the velocity vector, since the
absolute error in determining particle positions is in-
dependent of Λt. The basic idea to enable reliable
particle tracking for values of rp ≈ 1 and smaller is to
take into account additional information about the flow
and use this information to guide the particle match-
ing. Towards this end, most PTV approaches introduce
a motion model (Sect. 25.2.1). Some advanced PTV
techniques based on motion models are discussed in
Sect. 25.2.4.

Another difficulty in PTV stems from the fact that
the number of particles in two successive frames may
not be equal. Even if the number of particles is equal,
the assumption that the same set of physical particles

is visible in both images is not valid. Instead, a PTV
algorithm has to handle the following events:

• Entry respective trajectory initialization: Particles
may enter the field of view. These particles do not
have a correspondence partner in the previous frame.• Exit respective trajectory termination: Particles may
leave the field of view. These particles do not have
a correspondence partner in the following frame.• False positives and false negatives: Image noise may
result in spurious particle images at locations where
actually no particle is visible. Segmentation failures
may result in a loss of particles, e.g., particles are
not segmented due to their low intensity.• Overlapping particles and occlusion: Especially for
high particle densities, an overlap and occlusion
handling has to be introduced.

Since all these events and their consequences have
to be considered for each particle in each image of a se-
quence, PTV algorithms tend to be quite complex. In the
following sections, some advanced PTV techniques are
discussed.

Advanced Techniques to Solve
the Motion Correspondence Problem

As discussed in the previous section, the most diffi-
cult step of a PTV algorithm is to find the unique,
correct solution to the motion correspondence prob-
lem: all particles in an image have to be associated
to their correct matching partners in the next frame.
This association is difficult for higher particle densi-
ties, since the probability of ambiguities becomes large,
i. e., there will be several possible matching partners
within a search region in the next frame. The basic idea
of advanced PTV algorithms is to use additional a pri-
ori knowledge and assumptions about the flow field.
Based on such information, a model of the flow can be
introduced. Further, kinematic constraints can be used
to reduce the number of corresponding particles and
thus the number of ambiguities in the matching. The
reduction of the number of ambiguities becomes pos-
sible for two reasons. First, using a model of the flow
field enables the prediction of the future position of
particles by extrapolation. Thus, the search region for
the correspondence search may be located at this pre-
dicted position. Second, if the flow model is a good
approximation of the actual flow field, there will be
a high probability that the predicted position is already
at the correct location of the match partner. Thus, the
size of the search region may be reduced. If there is
only one particle within the predicted search region,
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a unique match is established. If still several matching
partners remain, one of them may be chosen as the cor-
rect match according to certain criteria, which are again
based on additional information or assumptions on the
flow.

The main assumption that is made in many tracking
algorithms is the smoothness of the flow field, which is
based on the physical principle of inertia. Due to inertia,
the motion of an object will not change abruptly between
two frames, given that the frame rate is sufficiently high.
Inertia is related to the temporal smoothness of particle
trajectories. In addition, spatial smoothness (or spatial
coherence) of the velocity field may also be assumed.
In particular, for incompressible, viscous flows, the vel-
ocity vectors within a spatial neighborhood will vary
smoothly. Thus, velocity vectors next to each other will
be similar in speed and direction.

In addition to the basic smoothness assumptions, any
a priori knowledge about the flow field may also be in-
corporated into the tracking. For example, if the flow is
known to have a mean bulk velocity, this velocity can be
used as an offset in the tracking algorithm. Search radii
defining the area where matching particles are supposed
to be found can be defined based on hydromechanic
knowledge, e.g., maximum expected velocities or turbu-
lence scales such as the Kolmogorov scales or Taylor
microscales [25.27]. Such considerations are particu-
larly important for the initialization of trajectories, since
for particles entering the field of view, no velocity vec-
tor is available that can be used to predict their next
position.

Another approach to resolve ambiguities in the
correspondence analysis is to take into account sev-
eral possible matches and defer the decision of the
correct match on later frames. Such approaches are
realized using techniques of statistical data associa-
tion or combinatorial optimization. These techniques
can also deal with particle occlusion and therefore re-
solve crossing trajectories. This is possible because
a larger temporal scope is taken into account when
solving the correspondence problem, e.g., a temporal
neighborhood of three previous and three future frames.
The correspondence is solved by finding an optimal
set of trajectories within this temporal neighborhood,
where optimality is expressed, e.g., in terms of trajectory
smoothness.

Finally, some remarks concerning the optimal choice
of thresholds and other tracking parameters, e.g., size of
search regions, shall be made. In many cases, the optimal
parameters depend on the flow conditions, i. e., particle
density and flow velocity. However, the latter are not

constant throughout the whole image, but there may be
significant variations of these quantities within a single
image. Obviously, optimal performance of a tracking
algorithm cannot be achieved using a fixed set of pa-
rameters. Instead, the parameters should adapt to the
local flow conditions. For example, it does not make
sense to use a search region based on a global maximum
velocity constraint within a region of the image where
the velocity is very small and the particle density is very
high. In this case, a search region based on a maximum
velocity constraint will be much too large. It may also
be advantageous to adapt the shape of the search region
to the flow conditions. For example, if there is a promi-
nent main flow direction, the search region should be
elongated along this direction.

In the following subsections, some implementations
of the ideas developed in this section are presented.

Two-Frame Tracking. The simplest two-frame track-
ing technique performs a nearest neighbor search based
on a minimum-velocity constraint. Hering et al. [25.67]
use the spatial overlap of particle images to identify the
nearest neighbor. The overlap is caused by overlapping
integration times of the even and odd fields in an inter-
laced camera frame. If non-interlaced cameras are used,
the overlap may be created artificially by a morpho-
logical dilation. The approach is limited to low particle
densities.

The performance of two-frame tracking can be in-
creased towards higher particle densities by including
a spatial coherence constraint and requiring velocity vec-
tors within a spatial neighborhood to be similar [25.25].

Multiframe Tracking. Multiframe techniques are based
on the assumption of trajectory smoothness. They use
a model of the particle motion to predict the particle
positions in the next frame. This model is given by
the Taylor expansion of the particle trajectory equa-
tion (25.135). The difference in these techniques is the
degree of approximation in the Taylor expansion. Three-
frame techniques use the actual frame and one previous
frame to compute a first-order approximation of the par-
ticle velocity. The resulting velocity vector is used to
predict the particle position in the next frame, assum-
ing that the velocity stays constant. If several match
candidates are found within a neighborhood around the
predicted particle position, the particle with the smallest
distance to the predicted position is chosen. This choice
corresponds to a minimum acceleration constraint on
the particle motion. In a similar manner, higher-order
terms in the Taylor expansion may be taken into ac-
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count to improve the accuracy of the predicted particle
position [25.27].

From the point of view of implementation, imposing
the temporal smoothness constraint is actually a matter
of defining search areas around predicted particle posi-
tions. In most applications, circular areas are used. The
radii of these areas are chosen according to the kinematic
constraints imposed by the flow model or according to
prior hydromechanic knowledge about the flow, for ex-
ample, to initialize a trajectory, the search radius in the
second frame may be defined by the maximum expected
velocity. The centers of the search areas in the third and
fourth frame are predicted by extrapolating the model,
while their radii may be chosen according to the expected
fluctuations in the velocity. The latter can be estimated
from the Kolmogorov scales of the flow and the imaging
parameters [25.27].

Combinatorial Optimization. The motion corres-
pondence problem between two sets of features in two
successive frames may be formulated as a combinato-
rial optimization problem. Based on such a formulation,
results and algorithms developed in graph theory and
operations research may be applied to PTV.

Given are two sets of particle coordinates P1 and P2
(particle images in the first frame at t = t1 and particle
images in the second frame at t = t2 = t1 +∆t):

P1 = {p1,i , i = 1..N1
}

, (25.142)

P2 = {p2, j , j = 1..N2
}

, (25.143)

where pi, j = (xi, j , yi, j ) are the coordinates of particle j
in frame i. The particle matching between two succes-
sive frames may be described by an association matrix
α = (αij ), with αij = 1 if particle i in the first frame is
matched with particle j in the second frame and αij = 0
elsewhere. The task is to find an optimal assignment be-
tween the elements of the first and those of the second
set.

Optimality is expressed in terms of an objective func-
tion d that is linear in the associations between the two
sets:

d =
N1∑

i=1

N2∑

j=1

αij cij , (25.144)

where cij is the cost for the association αij . The costs
cij are chosen according to the kinematic constraints
discussed in the previous section, e.g., favoring smooth
trajectories. The optimal assignment is determined by

minimizing the objective function (25.144). This for-
mulation of the two-frame tracking is equivalent to
a so-called bipartite graph matching or assignment
problem, which is a basic problem of combinatorial
optimization occurring in many applications. Efficient
algorithms to solve it have been developed [25.68].
For an example of a PTV application based on bi-
partite graph matching (see [25.69]). Stellmacher and
Obermayer [25.70] present an interesting approach to
simultaneously estimate particle correspondences and
a local affine transformation by applying a combined dis-
crete and continuous optimization method. This method
has been originally proposed by Gold et al. [25.71] for
solving point-matching problems in statistical pattern
recognition.

If the temporal scope of the tracking is extended
to three or more frames, the problem becomes a mul-
tidimensional assignment problem. Such problems are
known to be NP-complete, i. e. there is no efficient al-
gorithm to compute their solution [25.68]. However,
approximate solutions can be found using greedy search
techniques and other heuristics [25.61]. The complexity
of the correspondence analysis is significantly increased
due to the extended temporal scope. Therefore, combi-
natorial techniques are computationally expensive. On
the other hand, these techniques are also able to resolve
crossing trajectories and find an optimal set of trajecto-
ries in the presence of particle occlusions and dropouts
due to segmentation failures.

Statistical Techniques. Statistical approaches to solve
the motion correspondence problem (statistical data as-
sociation) have been originally developed in the context
of radar target tracking and surveillance, where particle
tracking is referred to as multiple target tracking. A large
number of different approaches and algorithms has been
published. For an introduction see [25.72,73]. A review
of statistical data association techniques in the context
of computer vision is given by Cox [25.74].

Statistical data association techniques are specif-
ically developed to resolve ambiguities in motion
correspondences, including events like track initiation
and termination, particle occlusion, and false posi-
tives/negatives. Like the other advanced techniques
discussed so far, most statistical techniques are also
based on the two paradigms of prediction of an optimal
search region and postponing assignment decisions by
examining subsequent frames. The difference of statisti-
cal approaches is that they model the motion of a particle
over time as a stochastic process. The optimal particle
state according to the measurements and the underly-
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ing model is then computed within the framework of
Bayesian inference [25.75]. Within this framework, the
probability distribution of the particle state is propa-
gated over time and updated by the measurements in
each frame. A (stochastic) state vector is introduced,
which describes the actual state of a particle, e.g., its
position, velocity and acceleration. This state vector
follows a probability distribution, the so-called prior
distribution. When measurements of the particle state
become available (e.g., its position resulting from the
particle segmentation), this measurement information is
converted into a likelihood function defined on the par-
ticle state space. Likelihood functions are presumed to
contain all the relevant information in the observed data.
They provide a probabilistically correct method of com-
bining all types of sensor information and incorporating
it into a tracker’s estimate of the particle state. Note
that this may include the detailed physics of the camera
response and its noise characteristics. Bayes rule is ap-
plied to combine all this information and compute the
posterior distribution on the target state by combining
the prior distribution with the likelihood function. Fi-
nally, optimal particle associations are computed from
these probability distributions. All statistical data associ-
ation techniques may be formulated within this Bayesian
framework.

The simplest statistical tracking technique is the
Kalman filter [25.73, 76]. It is based on the assump-
tions of a linear model of particle motion (like (25.135))
and Gaussian distributions of particle state and mea-
surement error. The Kalman filter computes the optimal
position of a particle in the next frame, by predicting
its position according to a model and combining this
prediction with a measurement. Note that the predic-
tion also includes the precision of the particle location.
Optimality is achieved by taking the errors of the pre-
diction and the measurement into account. For example,
the shape of the search region around the predicted po-
sition may be chosen according to the covariance of
the predicted position, which typically results in ellipti-
cal search regions instead of circular ones. Examples of
Kalman filters applied in PTV are described in [25.28].

Simple Kalman filters have several drawbacks. They
provide a statistically optimal estimate of particle posi-
tion and thus can guide the tracking and implicitly reduce
ambiguities. However, they cannot handle ambiguities
explicitly. An extension of a Kalman filter with increased
capabilities in the handling of ambiguities is the multi-
ple hypothesis tracker (MHT) [25.73,77]. In the case of
ambiguities, the latter takes into account the k-best hy-
potheses (computed by a Kalman filter). Probabilities for

all the hypotheses are computed and the most probable
hypothesis is chosen. Thus, the MHT is a combined ap-
proach based on statistical reasoning and combinatorial
optimization.

In complex tracking problems (such as turbulent mo-
tion), the assumptions of the Kalman filter, i. e., a linear
model and Gaussian probability distributions, may be
too simplistic. It is possible to relax these assumptions
and work with general probability distributions of arbi-
trary shape as well as arbitrary nonlinear models. This
general framework of Bayesian multiple-target tracking
is discussed in the book by Stone et al. [25.75].

Hybrid Methods Using Velocity Estimation Tech-
niques. Hybrid methods combining a PIV velocity
estimation with the tracking of single particles [25.22,
63, 78] have already been discussed in Sect. 25.2.2.
Bastiaans et al. [25.23] present a hybrid method com-
bining a PIV prediction step with a tracking step based
on combinatorial optimization. An important condition
for hybrid PIV/PTV methods is the spatial coherence
of the flow field, since only then the PIV prediction
step will yield a reasonable estimate of the local vel-
ocity.

3-D/3-C Tracking
PTV can be extended to 3-D measurements using the
same basic techniques as in 3-D PIV, namely stereo-
scopic or multicamera image acquisition. In addition
so solving the motion correspondence problem (tem-
poral correspondence), a 3-D PTV algorithm has to
solve the stereo correspondence problem (spatial corres-
pondence), i. e., to find corresponding particles in two or
more images taken from different viewpoints. It is nec-
essary to establish the stereoscopic correspondences of
particles uniquely in order to compute their 3-D position
by triangulation of the optical rays.

Basically, there are two different approaches to 3-D
PTV. They differ in the order in which the spatial and
temporal correspondences are solved. One approach first
performs particle tracking in the image planes, resulting
in a set of 2-D particle trajectories. Thus, the motion
correspondence is solved first. Then, the stereo corres-
pondences of the particle trajectories are analyzed to
find the 3-D coordinates [25.29]. The other approach
first solves the stereoscopic correspondences of single
particles to compute their 3-D coordinates. Afterwards,
particle tracking is performed in 3-D space [25.27, 64].
For this approach, three or more views of the flow
field are needed in order to resolve stereoscopic am-
biguities in the determination of the particle positions.
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A recent approach is to combine temporal and spa-
tial information and solve the correspondence analysis
simultaneously [25.79].

The goal of 3-D PTV is to measure the three compo-
nents (3-C) of the velocity vectors within a 3-D volume
in space. Towards this end, a volume illumination has
to be used instead of a light sheet that is typically
used in 2-D applications. The volume illumination intro-
duces a number of difficulties concerning the imaging
of particles and the processing of such images:

• Particle occlusion: Particles located along the same
optical ray occlude each other, which limits the
particle density or the depth of view. A trade-off
between these two parameters has to be chosen
according to the goals of the measurement.• Projection of the 3-D scene: A particle image
obtained using volume illumination is the 2-D pro-
jection of a 3-D scene with a certain depth range.
Depending on the particle density, this will increase
the probability of spatial overlap of the particle im-
ages or trajectories crossing each other in the image
plane. In addition, the assumption of spatial coher-
ence of the projected flow field is no longer valid,
since particles that are actually far away from each
other in the 3-D volume may be located next to each
other in the image.• Out-of-focus imaging: If the illuminated volume is
larger than the depth of field of the lens, some par-
ticles will be out of focus, resulting in a larger size
and lower contrast of these particles. Such effects
have to be considered in the particle segmentation.

Further Readings
Further information about tracking methods can be
found in [25.81, 82] and [25.83] in the context of
computer vision and in [25.36] in the context of flow
measurement. In-depth textbooks on Kalman filtering in
the context of radar applications are available [25.72,
73, 75]. Many ideas and techniques described there
can also be successfully applied in visual track-
ing applications like PTV. Cook et al. [25.84] and
Nemhauser and Wolsey [25.68] discuss algorithms to
solve combinatorial optimization problems, similar to
those arising in tracking applications with increased
temporal scope.

25.2.5 Optical-Flow-Based Velocity Analysis

Optical flow can be considered as the distribution of ap-
parent velocities of movement of brightness patterns in

an image [25.85]. More precisely the optical flow is an
approximation to the two-dimensional motion field of
an image sequence. We obtain this motion field by pro-
jecting the three-dimensional velocities of object points
in three-dimensional space onto the two-dimensional
image plane [25.86].

In estimating the optical flow and in determining
motion fields from the estimated optical flow, there arise
a number of peculiarities and difficulties, which have to
be taken into account:

• There may be regions in the images where no mo-
tion can be determined (the black wall problem) or
where only the normal velocity component can be
determined (the aperture problem). Figure 25.15 il-
lustrates these situations. In order to obtain a dense
flow field an interpolation or a regularization tech-
nique has to be applied. This is an intrinsic problem
in optical flow computation, and it is addressed
throughout the chapter.• There may be regions in the image, where the mo-
tion is nontranslational. Especially for applications
in fluid dynamics the nonrigid behavior of fluids
has to be taken into account. For these situations
appropriate models have been developed.• For large displacements the temporal sampling the-
orem may be violated. Coarse-to-fine techniques
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Fig. 25.15 The black wall and aperture problems. At
the corners of the moving square, a unique velocity
can be estimated. On the edges of the squares only
the normal component of the velocity is determinable.
In the center the motion is completely unconstrained
(from [25.80])
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applied on bandpass-filtered image sequences help
to cope with this problem.• In the presence of motion discontinuities, reflections
or corrupted pixels, parameterized flow field models
fail. Using a robust approach, described in the para-
graph on robust estimation below, we can determine
a correct motion field even in these situations.• Brightness changes have to be taken into account. Il-
lumination changes lead to a misinterpretation of the
optical flow field. This can be nicely demonstrated
by considering a rigid sphere with homogeneous sur-
face reflectance, spinning around an axis through the
center of the sphere (Fig. 25.16). If the surface is not
textured and the illumination stays constant, the op-
tical flow field would be zero over the entire sphere.
If a directional light source moves around the same
sphere the illumination changes would be falsely at-
tributed to motion of the sphere surface. In many
situations we can apply physical models of bright-
ness variations to deal with brightness changes.

Optical flow methods can be classified as belonging
to one of these groups:

• Differential techniques, which compute image vel-
ocity from spatiotemporal intensity derivatives.• Frequency-based techniques, which use en-
ergy/phase information in the output of velocity
tuned filters.• Tensor-based techniques, which deduce the motion
field from the local image brightness distribution
represented as a structure tensor.

Though the attempts to estimate optical-flow look
very different at first glance, all of these approaches
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Fig. 25.16a,b Illumination changes and optical-flow. (a) Spinning
sphere with fixed illumination leads to zero optical flow. (b) Mov-
ing illumination source causes apparent optical-flow field without
motion of the sphere (after [25.29])

are closely related. Simoncelli [25.80] showed that dif-
ferential techniques are equivalent to frequency-based
technique, provided that the derivatives and filters
are chosen appropriately. The structure tensor can be
constructed based on operations in the spatiotempo-
ral domain [25.62], but it can also be obtained by
linear combinations of outputs of filters in frequency-
domain [25.87]. Jähne et al.[25.29] and Barron et
al.[25.86] provide a well-founded overview on the field
of optical-flow estimation and give a quantitative com-
parison of the results.

Though the method of optical-flow is quite com-
mon in computer vision, the extent of application in
experimental fluid dynamics is relatively small, so far.
Therefore in the following we will provide a detailed re-
view of the optical flow methods classified above, and we
will show, how to cope with each of the difficulties listed
above. We conclude this chapter with a literature review.

Optical-Flow Methods
Differential Techniques. The general task is to
determine the optical flow field f = ( f1, f2)T =
(dx/dt, dy/dt)T from the gray values of an image se-
quence. In the simplest case it is assumed, that the gray
value g(x, t) along a path x(t) remains constant for all
time:

g(x(t), t) = const .

By taking the temporal derivative on both sides and
applying the chain rule one obtains:

dg

dt
= ∂g

∂x

dx

dt
+ ∂g

∂y

dy

dt
+ ∂g

∂t
= 0 .

Writing down in vector notation using ∇g =
(∂g/∂x, ∂g/∂y)T this yields the brightness constancy
constraint equation (BCCE):

(∇g)T f + gt = 0 . (25.145)

Because the partial derivatives gx = ∂g/∂x, gy = ∂g/∂y
and gt = ∂g/∂t are accessible by the application of
a derivative filter, one obtains one constraint for the
two-component flow field. Dealing with two unknowns
in one equation we have an ill-posed problem. Graphi-
cally spoken the solution of (25.145) determines a line,
containing all vectors that are possible candidates for
the true optical flow vector (Fig. 25.15). Without fur-
ther assumptions only the flow perpendicular to the
constraint line can be estimated. This problem is com-
monly referred as the aperture problem of motion
estimation.
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Solving (25.145) for points xU in a sufficiently large
neighborhood U around x we may get other constraint
lines, so that we can determine the true optical flow
vector by the intersecting point of the constraint lines.
But the neighborhood must not be chosen too large,
because it is not assured, that the motion is constant in
a larger area. How large to choose the neighborhood
is referred as the generalized aperture problem. One
way to weaken the assumption of constant motion is
finding a local parameterization of the flow field, so that
one demands local coherency instead of local constancy.
This leads us to the second constraint of differential
optical flow estimation, the spatial coherence constraint.

The concept of optical flow originates from hydro-
dynamics. Grey values flow over the image plane, like
volume elements flow in fluids. In hydrodynamics the
principle of conservation of mass is formulated by the
continuity equation, which reads in its differential form

∂ρ

∂t
+∇(uρ) = ∂ρ

∂t
+u∇ρ+ρ∇u = 0 . (25.146)

The three-dimensional velocity u of a fluid element with
density ρ in three-dimensional space is apparently anal-
ogous to the two-dimensional optical flow f of a gray
value g in two-dimensional space. The BCCE (25.145)
corresponds to the continuity equation (25.146), if one
drops ρ∇u. Why do we have to drop the last term? Con-
sider an object moving away from the camera. In this
case the total brightness change dg/dx of a gray value
on a path x(t) is zero, because the irradiance in the image
plane remains the same for an object moving perpendic-
ular to the image plane. Because both gt and ∇g are zero,
we can apply (25.145). But we cannot apply (25.146),
because the additional term ρ∇u or g∇ f would not be
zero, because the motion is not divergence free.

However, under certain conditions the use of a two-
dimensional continuity equation instead of the BCCE
can be motivated. This is the case, if one deals with 2-
D transmittance images of a 3-D fluid flow, so that the
imaged 2-D flow is the density weighted average of the
physical 3-D flow [25.88,89]. The constraint on the data
now becomes

gx f1 + gy f2 + g f1 + g f2 + gt = 0. (25.147)

Local Weighted Least Squares. Assuming the optical-
flow to be constant within a small neighborhood, [25.58]
proposed a local method to estimate the optical-flow.
Goal is to minimize the squared left-hand side of the
BCCE (25.145) in a local neighborhood U around x,
which is given by the weighting (or window) function

w(x− x′):

f̂ = arg min
f

∞∫

−∞
w(x− x′)

[
(∇g)T f + gt

]2dx′ .

The weighting function in the simplest case is given by
a box-filter (all points in the neighborhood are weighted
equally), but better results can be achieved using a bino-
mial filter. Standard least-squares minimization (setting
the partial derivatives of the functional with respect to
f1 and f2 to zero) yields the equation system
(

〈gx gx〉 〈gx gy〉
〈gx gy〉 〈gygy〉

)

︸ ︷︷ ︸
A

(
f1

f2

)

︸ ︷︷ ︸
f

= −
(

〈gx gt〉
〈gygt〉

)

︸ ︷︷ ︸
b

(25.148)

with the abbreviation

〈a〉 =
∞∫

−∞
w(x− x′)adx′ .

The solution of (25.148) is given by

f = A−1b ,

provided that the inverse of A exists, i. e.. the determinant
of A is unequal to zero:

det A = 〈gx gx〉
〈
gygy

〉− 〈gx gy
〉2 �= 0 .

This is not the case, if all spatial derivatives in the local
neighborhood are zero (the black wall problem), or if all
gradients in the local neighborhood point into the same
direction (the aperture problem).

Global Constraints. Instead of assuming local spatial
constancy (and therefore coherence) by introducing
a window function we can demand global spatial coher-
ence. One can determine the optical-flow by minimizing
the BCCE (25.145) over the entire image Ω. To make the
problem well-posed an additional term, the regularizing
spatial coherence constraint ‖e2

S‖, is introduced:

f̂ = arg min
f

∫

Ω

[
(∇g)T f + gt

]2dx′ +λ2
∥∥e2

S

∥∥ .

(25.149)

The parameter λ controls the influence of the spa-
tial coherence term. Horn et al.[25.85] propose global
smoothness for the spatial coherence constraint:
∥∥e2

S

∥∥=
∫

Ω

‖∇ f1(x′)‖2 +‖∇ f2(x′)‖2dx′ .
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There are other suggestions for ‖e2
S‖, which may

be better suited to special kinds of problems (e.g.,
fluid flow analysis). To solve the minimization prob-
lem a variational approach can be adapted. Thus, the
integral equation (25.149) can be solved by a system of
Euler–Lagrange equations:

L f1 − ∂

∂x
L f1x − ∂

∂y
L f1y = 0 ,

L f2 − ∂

∂x
L f2x − ∂

∂y
L f2y = 0 .

The integrand of (25.149) can be identified with the
Lagrange function:

L =(gx f1 + gy f2 + gt)
2

+λ2( f 2
1x + f 2

1y + f 2
2x + f 2

2y

)
,

L plugged into the Euler–Lagrange equations yields the
diffusion–reaction system
(
(∇g)T f + gt

)∇g −λ2∇2 f = 0 .

For the case, that there is a high spatial gray value
variation (that means ∇g is large), the first summand
dominates in the equation, and the optical flow is cal-
culated using the BCCE. But if there is a black wall
problem, the optical flow is calculated from the last
summand, which states the Laplacian equation ∇2 f = 0.

The discretization can be performed using finite dif-
ferences or finite elements. Once guaranteed, that the
problem is well-posed, there exist a number of min-
imization schemes like Gauss–Jordan elimination or
Gauss–Seidel iteration, which can be applied.

Frequency-Based Techniques. The concept of identi-
fying sequences of 2-D images as 3-D spatiotemporal
structures allows one to analyze motion in the corre-
sponding spatiotemporal frequency domain (the Fourier
domain). Let g(x, t) be an image sequence of any pat-
tern moving with constant velocity, causing the optical
flow f at any point in the image plane, the resulting
spatiotemporal structure can be described by

g(x, t) = g(x− f t) . (25.150)

The spatiotemporal Fourier transform ĝ(k, ω) of
equation (25.150) is given by

ĝ(k, ω) = ĝ(k)δ(kT −ω) , (25.151)

where ĝ(k) is the spatial Fourier transform of the pattern,
and δ(·) denotes Dirac’s delta distribution. This equa-
tion states, that the three-dimensional Fourier spectrum
of a pattern moving with constant velocity condenses to

a plane in Fourier space. The plane equation in Fourier
domain is given by the argument of the delta distribu-
tion in (25.151) and can be considered as an alternative
formulation of the BCCE (25.145):

ω(k, f ) = kT f . (25.152)

Taking the derivatives of ω(k, f ) with respect to kx and
ky yields both components of the optical flow:

f = ∇kω(k, f ) .

Quadrature-filter techniques try to estimate the ori-
entation of this plane by using velocity tuned filters in
the Fourier-domain. A quadrature-filter pair is a real
frequency selective filter together with its imaginary
Hilbert transform (Sect. 25.1.7). Its transfer function can
be written in complex notation q̂(k).

The most common quadrature-filter pair is the Gabor
filter, which selects a certain spatiotemporal frequency
region with a Gaussian window centered at (k0, ω0). Its
complex transfer function is

Ĝ(k, ω) = exp

(
−1

2

√
(k−k0)2 + (ω−ω0)2σ2

)
.

From this the spatiotemporal filter mask can be com-
puted using the shift theorem:

G(x, t) = 1

(2π)3/2σ3
exp[i(k0x+ω0t)]

exp

[
−
(

x2 + y2 + t2

2σ2

)]
.

By applying this filter for different parameter sets (k, ω)
on the original spatiotemporal image we get estimates
of the spectral density (or energy) of the corresponding
periodic image structure belonging to these parameter
sets. Ideally, for a single translational motion, the re-
sponses of these filters are concentrated about a plane
in k–ω-space, so that we are able to get the optical flow
by a least-squares fit to the data. Another way to calcu-
late the optical flow is by constructing a structure tensor
composed of the filter outputs [25.90].

Tensor-Based Techniques. Optical-flow estimation can
be formulated as orientation analysis in a three-
dimensional spatiotemporal image. The concept of
orientation analysis of a pattern in 2-D (Fig. 25.17a)
can be generalized to 3-D (Fig. 25.17b). Any constantly
moving gray value structure causes inclined patterns.
Goal of tensor-based optical-flow estimation is to find
the orientation of these patterns, provided that there exist
any oriented patterns.
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Fig. 25.17 (a) A simple neighborhood
in 2-D. The grey values depend on one
coordinate in the direction of the unit
vector n̂ only. (b) Space–time diagram
with two spatial components and
a temporal component (after [25.62])

Let r = (r1, r2, r3)T be the vector pointing into
the direction of constant brightness within the three-
dimensional x–t domain. Once estimated r one obtains
for the optical flow:

f = ( f1, f2)T = 1

r3
(r1, r2)T (25.153)

Here r points orthogonally to the spatiotemporal gra-
dient vector ∇xt g = (gx, gy, gt)T. Therefore the scalar
product between r and ∇xt g has to vanish:

(gx, gy, gt) · (r1, r2, r3)T = r3
[
(∇g)T f + gt

]= 0 .

We arrive at the well-known BCCE equation (25.145).
Instead of the approach of [25.58], where the BCCE is
minimized in a spatial neighborhood here one minimizes
∇xt g ·r in a spatiotemporal neighborhood U , which is
characterized by the window function w(x− x′, t − t′).

r̂ = arg min
r

〈
[∇xt g ·r]2 〉

using the abbreviation

〈a〉 =
∞∫

−∞
w(x− x′, t − t′)a dx′dt′ .

Under the assumption of constant r (that is, constant
f ) within U , we the minimization problem can be
reformulated as

r̂ = arg min
r

[
rT〈∇xt g ·∇xt g

T〉 r
]

(25.154)

= arg min
r

rTJr , (25.155)

where J with its components Jpq = 〈gpgq〉 is the
three-dimensional symmetric structure tensor, and gp,
p ∈ {x, y, t}, denotes the partial derivative along the
coordinate p.

The structure tensor can be transformed into diag-
onal shape by means of rotation. Thus the principal

axes of the structure tensor can be found by solving
the eigenvalue problem

Jr = λr .

The eigenvector to the corresponding minimal eigen-
value denotes the direction of constant brightness in the
x–t domain, from which the optical flow can be cal-
culated according to (25.153). From the rank of the
structure tensor the type of motion can be deduced: Con-
stant brightness (the black wall problem, rank(J) = 0),
spatial orientation and constant motion (the aperture
problem, rank(J) = 1), distributed spatial structures and
constant motion (rank(J) = 2), and distributed spatial
structures but no coherent motion (rank(J) = 3). The
structure tensor technique is not only able to give an es-
timate for the optical flow, but is also able to present
a confidence measure which assesses the quality of
the estimate. A detailed analysis of the structure ten-
sor technique and its practical application to optical
flow computation can be found in [25.29]. The struc-
ture tensor technique can be formulated as a solution of
the total least-squares (TLS) problem in a more-general
way [25.91].

Implementation of the Structure Tensor. The expres-
sion for the structure tensor in (25.154) can be written
explicitly as:

J =
⎛
⎜⎝

〈gx gx〉 〈gx gy〉 〈gx gt〉
〈gx gy〉 〈gygy〉 〈gygt〉
〈gx gt〉 〈gygt〉 〈gt gt〉

⎞
⎟⎠ ,

using the abbreviation

〈a〉 =
∞∫

−∞
w(x− x′, t − t′)adx′dt′ .
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The implementation of the structure tensor can be
carried out very efficiently by standard image processing
operations. Identifying the convolution with a smooth-
ing operation (for example with the isotropic binomial
operator B), and the derivatives in the p-th respec-
tive q-th direction with edge detectors (for example the
optimized Sobel filters Dp and Dq [25.92]), we can
construct a structure tensor operator

Jpq = B(Dp ·Dq) ,

where the dot signals a pixel-wise multiplication.
Because smoothing in general comes along with

a loss of information, the result after applying the struc-
ture tensor operator can be stored in a more compact
sequence than the original data. In practise this can
be handled by downsampling the resulting sequence by
a factor of two, for instance. In order to find a procedure
to perform the principal axis transformations efficiently,
we bear in mind that we are dealing with very small and
symmetric matrices. These types of data can be covered
by using the numerical method of Jacobi transformations
to find the eigenvalues and eigenvectors [25.93].

Improvements of Optical Flow Determination
In this section improvements of determining optical flow
will be presented. These improvements will help to solve
the difficulties mentioned in the introduction. Each im-
provement can be applied to more than one (but not
necessarily to all) methods of determining optical flow.

Parameterization of 2-D Optical-Flow Fields. As men-
tioned in the introduction to this chapter the standard
local optical-flow methods assume that the optical flow
f (x, t) is constant within the local neighborhood U
around x. However, the optical flow may be expanded
to a first order Taylor series in the vicinity of (x0, t0), in
the way as in Sect. 25.2.1 (25.130). Then one is capable
to estimate implicitly spatial gradients of the flow fields,
for instance.

The BCCE supplemented by this parameterization
yields the extended brightness change constraint equa-
tion (EBCCE):

(∇g)T(t + Ax+at)+ gt = 0 . (25.156)

Coarse-to-Fine Techniques. The temporal sampling
theorem, already noted in Sect. 25.2.1, states a theoreti-
cal upper limit for the magnitude of displacements that
are able to be analyzed. Apparently the maximum deter-
minable displacements are limited by the magnitude of

the highest spatial wavenumbers, which are contained
in the image.

Coarse-to-fine techniques or hierarchical multigrid
approaches (Sect. 25.2.1) help to estimate large motions.
By smoothing the image the high frequency content can
be eliminated from the image sequence, so that one is
able to estimate a coarse motion field. Then the motion
can be undone by transforming the image back by means
of the estimated coarse motion field. Now the higher-
frequency content can be used to estimate a finer motion
field. Added to the previously coarse motion field the fine
motion field provides a more accurate approximation to
the real motion field.

This procedure can be improved in several ways:

• If an estimation on a coarse level is incorrect, the
fine-level estimate has no chance of correcting the er-
rors. To fix this, we must have knowledge of the error
in the coarse-level estimates. This suggests working
in a probabilistic framework. Indeed, a state evolu-
tion equation and a measurement equation can be
proposed similar to Kalman filtering [25.80].• For more-accurate computation additional filters can
be introduced, which slice the bandwidth in smaller
pieces than these given by a dyadic pyramid struc-
ture. This results in a combined multiresolution and
multiscale approach [25.94].• The motion can be distributed very irregularly over
the image plane. In these situations a selective mul-
tiresolution approach is suggested [25.95].

Robust Estimation. There are situations in which even
parameterized flow field models fail to determine the
optical flow correctly; these include the presence of
multiple motions, such as motion discontinuities at
boundaries (occluded multiple motions), or different
motions being overlaid (transparent multiple motions)
but also the presence of reflexes or corrupted pixels.

Least squares estimation tries to minimize
a quadratic objective function ρ(x):

f̂ = arg min
f

∞∫

−∞
w(x− x′)ρ

[
(∇g)T f + gt

]
dx′

with ρ(x) = x2. The influence function ψ(x) of the ob-
jective function is defined as the derivative of ρ with
respect to x:

ψ(x) = ∂ρ(x)

∂x
.

In the least-squares case the influence of data points
increases linearly and without bound, so that outliers
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that do not fit to the model such as corrupted pixels have
a great influence and distort the estimation of the cor-
rect optical flow dramatically. This is due to the fact
that, by using a quadratic objective function, we inher-
ently assumed that the residual errors are Gaussian and
independently distributed within the neighborhood U .

To achieve a more-robust parameter estimation we
have to replace the quadratic objective function by
a suitable other function, which is referred to as an
M-estimator in statistics. The influence function of an
M-estimator has to be redescending, i. e., it has to ap-
proach zero for large residuals after an initial increase
for small values. [25.96] proposed a commonly used
M-estimator (Fig. 25.18), which reads together with its
influence function

ρ(x, σ)= x2

σ + x2 , ψ(x, σ)= 2xσ

(σ + x2)2 , (25.157)

where σ is a scale parameter.
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Fig. 25.18a,b An example for an M-estimator: (a) Ge-
man and McClure norm (25.157). (b) Its derivative
(after [25.29])

Given a robust formulation, there are numerous opti-
mization techniques that can be employed to recover the
motion estimates, and the most appropriate technique
will depend on the particular formulation and choice of
the ρ function. For detailed information about robust
estimation the reader is referred to [25.97].

Dealing with Brightness Changes. In many situations
the constraint of brightness constancy (25.145) is vio-
lated. In some cases we are able to find a physical
model for the time-dependent brightness variation. So
one can estimate both the correct optical flow field f and
the parameters a of the underlying physical process.
The approach of [25.98] constitutes an extension of the
brightness change constraint equation to parameterized
models of brightness variation, provided that these mod-
els are linear in a or can be linearized by a Taylor series
expansion.

In Sect. 25.2.5 we have stated that for the case that
the brightness g(x, t) is constant along a path x(t) for
all times, we are able to derive a constraint on the
optical-flow. Now we allow, that the brightness along
the path may change according to a time-dependent
parameterized function h(g0, t, a):

g (x(t), t) = h(g0, t, a) , (25.158)

where g0 = g (x(t0), t0) denotes the image at time t0,
and a is the parameter vector for the brightness change
model. The total derivative on both sides of (25.158)
yields the generalized brightness change constraint
equation (GBCCE),

(∇g)T f + gt = d

dt
h(g0, t, a) ,

which reduces to the well-known BCCE if h is constant.
In the following some models of brightness variation

are presented:

Linear source terms. When sources are present, the
brightness depends linearly on time: h = qt, where q
denotes the source strength. The GBCCE becomes

(∇g)T f + gt = q .

Exponential decay. In relaxation processes the time-
dependent brightness can be modeled by an exponential
decay: h = g0 exp(−κt), where κ denotes the relaxation
constant. By differentiating h with respect to t the expo-
nential function reproduces itself, so that we can write
for the GBCCE:

(∇g)T f + gt = −κg .
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Diffusion process. Fick’s second law, which states that
for isotropic diffusion the rate of change of the gray value
is proportional to its Laplacian, tells us what the GBCCE
looks like in this case, where the diffusion constant D is
the proportional constant:

(∇g)T f + gt = D∇2g ,

One can combine these physical models of bright-
ness variation with various differential or tensor-based
techniques: One has to replace the BCCE by the
GBCCE, and the minimization has to be carried out
over the optical flow f and over the parameters a
simultaneously.

Literature Review
Each of the optical-flow methods (differential,
frequency-based, or tensor-based approaches) presented
in Sect. 25.2.5 was adapted to evaluation in the field of
fluid mechanics. The term optical flow suggests its ap-
plication to image sequences dealing with continuous
tracer, such as heat or concentration. Indeed, most of the
literature addresses continuous tracer. On the other hand,
in practice fluid flow analysis is to a great extent particle
based, which does not prevent optical-flow-based meth-
ods from being applied as well. Examples can be found
in the literature.

Differential Techniques. Ruhnau et al.[25.94] applied
the method of Horn et al.[25.85] (25.149) to im-
ages recorded with the conventional PIV technique.
They used a coarse-to-fine strategy. The same authors
replaced the global smoothness constraint by a reg-
ularizing coherence constraint, relying on the Stokes
equation [25.99] and on the vorticity transport equa-
tion [25.100].

Instead of applying the BCCE, other authors used
the 2-D continuity equation (25.147) as model. This
was justified by the special kind of recording technique
(such as transmittance imagery [25.88]) or data (such as
satellite imagery [25.89]). The latter used a second-order
div–curl regularization scheme instead of just assuming
global smoothness. Moreover, they applied their scheme
to PIV sequences [25.101].

Cohen et al. [25.95] applied a global method using
a nonquadratic regularization technique to atmospheric
and oceanographic image sequences. They have shown,
that using an appropriate tessellation of the image ac-
cording to an estimate of the motion field can improve
optical flow accuracy and yields more reliable flows.
This method defines a nonuniform multiresolution ap-
proach for coarse-to-fine grid generation.

Frequency-Based Techniques. Larsen[25.90] applied
the local energy distribution to satellite images using the
frequency-based techniques presented in Sect. 25.2.5.
They used the optical-flow estimates together with con-
fidence measures as an input for a regularization method
based on the Markovian random-field approach.

Tensor-Based Techniques. Garbe et al. [25.102] es-
timated both velocity vector field and heat flux
simultaneously in image sequences, recorded using in-
frared thermography. They expanded the structure tensor
technique by a model including brightness changes.

Jehle and Jähne [25.103] estimated the wall shear
stress in a medical engineering application directly,
without previous computation of the velocity vector
fields. The wall shear rate emerges as some compo-
nents of the velocity gradient tensor, which is a 3-D
generalization of the matrix A.
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