Prediction of laminar-turbulent transition with DNS, LES and RANS methods

Wolfgang Rodi
University of Karlsruhe
Karlsruhe, Germany

Introduction

- Transition of practical relevance in flows around
 - aircraft, space vehicles, ground vehicles
 - turbomachinery blades (compressor blades, turbine blades)
 - wind turbines and fixed structures exposed to wind
 - in conduits at low Re

 Transition can greatly influence the flow development, the losses, drag, heat transfer

 Hence important to understand transition phenomena, have ability to predict transition processes

Illustration of difference laminar/turbulent flow

Modes of transition 1

1. Natural transition

The natural transition process (from Schlichting, 1979)

2. Bypass transition

at larger disturbances (e.g. free-stream turbulence Tu > 1 %)

Natural transition – from LES

From P. Schlatter (2005), Ph.D. thesis, ETH Zurich

Modes of transition 2

3. Separated – flow transition

- transitional separation bubbles -

Periodic unsteady transition – due to passing wakes

 Periodic wakes cause intermittent bypass transition

or

influence strongly separated – flow transition

Prediction methods for transition

- Linear stability theory (eⁿ method) and parabolised stability equations (PSE)
 - mainly for predicting onset of natural tansition on airfoils
 - not for full transition process, bypass and separated-flow transition
- <u>Direct Numerical Simulation (DNS)</u>
- all processes involved, including turbulent fluctuations, governed by Navier-Stokes equations
- numerical solution of these equations, resolving all scales no model involved
- very powerful tool, provides wealth of detailed information
- but very fine grid required, very expensive
- restricted to low Re and fairly simple geometries

Prediction methods for transition 2

Large Eddy Simulation (LES)

- solves Navier-Stokes equations on coarser grids
- does not resolve all scales
- accounts for effect of unresolved small-scale motion (mainly dissipative) by subgridscale model

RANS methods

- solving Reynolds Averaged Navier-Stokes equations
- model for Reynolds stresses –
 i.e. for entire spectrum of fluctuations
- in general special transition model with empirical relations for onset and often length of transition

Gilbert (1988) & Gilbert & Kleiser (1990) - first DNS from laminar to fully turbulent state

temporal development of velocity profiles

Pathlines showing Λ - vortices

Smagorinsky model with

$$v_t = (C_s \Delta)^2 |\overline{S}| \quad , \quad \Delta = (\Delta x \Delta y \Delta z)^{1/3}$$

not suitable for transitional flow

- Dynamic model calculating C_s from smallest resolved motion is suitable
- Schlatter (2005) tested this and Approximate Deconvolution model (ADM) of Stolz & Adams (1999) for Gilbert's channel flow (Re = $\overline{U}h/2\nu$ = 3333)
- He did DNS with 160³ grid, LES with 32³ grid
- Both SGS models o.k. for integral quantities,
 ADM model clearly better for transition structures

 in this test case

	Δx^+	Δy^+	Δz^+
DNS	7.3	3.9	0.04
LES	37	20	1.0

Animation provided by P. Schlatter

Frame: 253 Time: 126.0

P. Schlatter, Institute of Fluid Dynamics, ETH Zürich

Transitional structures visualized by λ_2 contours from Schlatter (2005)

LES of spatial development by P. Schlatter

P. Schlatter, Institute of Fluid Dynamics, ETH Zürich

DNS of natural transition in boundary layer

From Bake, Meyer, Rist (2002)

 λ_2 isolevel

Iso-surfaces of u'

DNS of bypass transition in boundary layer 1

Velocity fluctuations in planes parallel to wall from Durbin et al (2002)

DNS of bypass transition in boundary layer 2

Animation provided by T. Zaki, Imperial College

DNS of bypass transition in boundary layer 3

From Durbin et al (2002)

Experiments of Road and Brierly (1990)

LES of bypass transition in boundary layer

Animation provided by P. Schlatter (KTH Stockholm)

Transition induced by periodic wakes

DNS of Wu, Jacobs, Hunt, Durbin (1999)

Boundary layer transition induced by passing wakes

Idealization of experiment of Liu Rodi (1991)

Contours of v - fluctuations

Wakes passing through turbine cascade

Animation from Wissink, University of Karlsruhe

Transition on T106 LPT blade (Re = 148000)

DNS of Wu & Durbin – 50 mio grid points

 contours of wall – normal velocity on suctionside

- straight lines indicate laminar flow

Transition on T106 LPT blade (Re = 148000)

LES of Michelassi et al (2003)

- -10 mio grid points Dynamic SGS model
- Isolines of vertical velocity

Transition on T106 LPT blade (Re = 148000)

From Michelassi et al (2003) – Suction side

Time-averaged friction coefficient

Phase-averaged shape factor

DNS of transitional separation bubbles

Simulations with and without uniformly distributed free-stream fluctuations:

Simulations with free-stream fluctuations concentrated in wakes (wake data were kindly made available by Wu and Durbin from Stanford University):

Periodic boundary conditions in spanwise direction, Re=60000, is based on mean free-stream velocity \mathbf{U}_0 and length-scale L (see figure)

Simulations performed

DNS was performed using a finite-volume method on a boundary-fitted curvi-linear grid.

Sim.	grid	Inlet disturbances	Period (T)	Streamw. size
1	1038 x 226 x 128	none	_	2.1L
2	1926 x 230 x 128	7% free-stream fluctuations	-	3.5L
3.1	966 x 226 x 128	Oncoming wakes	0.6L/U _e	1.8L
3.2	1286 x 310 x 128	Oncoming wakes	0.3L/U _e	1.8L

Spanwise vorticity iso-surfaces (Sims. 1,2)

Phase-averaged statistics (film) Simulation 1 vs. Simulation 2

Boundary layer of Simulation 3.1 (made visible using an iso-surface of the spanwise vorticity)

Vortical structures in translucent box at the back belong to impinging wakes and are made visible with the λ_2 -criterion

Phase-averaged statistics of Simulation 3.1

Passing wakes induce elevated levels of <k>f in the free stream

Transition location as function of phase φ of passing wake

Transition is identified with the most upstream location along the line y/L=3.2x10⁻⁴ where <ww> exceeds 20% of its maximum

Comparison of the size of the separation bubble

Simulations 1, 2, 3.1 and 3.2.

Transition prediction with RANS 1

- Turbulence is averaged out effect of turbulent fluctuations on mean-flow quantities through Reynolds stresses $\overline{u_i u_j}$
- These need to be determined by a turbulence model
 - in transitional flows they go from zero in laminar flow to their values in the fully turbulent flow regions
- Wide variety of models developed basically for fully turbulent flows ranging from mixing-length to Reynolds-stress models
 - in practice mostly eddy-visocity models used:
 - 2 equation (k-ε, k-ω), 1 equation (Spalart-Allmaras)
- Can these models by themselves predict transition?

Transition prediction with RANS 2

- Natural transition owing to instability processes cannot be predicted by statistical RANS models
- Bypass transition (at Tu > 1%) is amenable to predictions by low Reversions of RANS models:
 - diffusion terms in transport equations for turbulence parameters
 (e.g. k) bring turbulence from free stream to near wall region, leading to production of more turbulence and then to transition
 - variety of models tested (Review by Savill 2002)
 - success more coincidental because predicted transition stronlgy dependent on distribution of turbulence parameters in laminar boundary layer
 - hence this approach considered unreliable

Transition prediction with RANS + empirical correlations 1

- More reliable to use empirical correlation for onset of transition
- μ_t from turbulence model multiplied by intermittency factor γ
- Transition starts where $Re_{\Theta} > Re_{\Theta, S}$ Empirical correlation $Re_{\Theta, s} = f(Tu, \frac{dp}{dx})$
- γ through transition either
 - from empirical relation
 e.g. involving Re_{Θ, E} (with Re_{Θ, E} ≈ 2 Re_{Θ, S})
 - or from transport equation for γ
- Many successful calculations
- But δ often not well defined
 - Re_⊙ difficult to compute in modern CFD codes (unstructured grids, massive parallel execution)

Transition prediction with RANS + empirical correlations 2

ERCOFTAC flat plate test cases from Schiele (2000)

From Nürnberger & Greza (2002)

Correlation based transition model using local variables

- Menter, Langtry et al (2004, 2006) model for use in modern CFD codes – correlations only based on local variables
- Instead of Re_o, use of local vorticity Reynolds number $Re_{\nu} = \frac{\rho y^2}{\mu} \frac{\partial u}{\partial y}$
- Transport equation for intermittency factor γ
- 2nd transport equation for transition momentum thickness Reynolds number Re_{Ot}
 - source terms such that outside boundary layer Re_{⊙t}= f (Tu, dp/ds) follows given empirical correlation
- When locally $Re_{\Theta t} > Re_v$, transition triggered by activating source term in γ -equation $\Rightarrow \gamma$ increases
- Basic turbulence model is Menter SST model
 - γ multiplies production term in k-equation (not μ₊)
- Modification for separation-induced transition

McDonald Douglas 30P-30N flap test case

From Menter /Langtry – Experiments performed at NASA Langley

Tu and transition location

Skin fricion on upper

surface of flap

DLR F-5 Transonic Wing

From Menter/Langtry – Experiment of Sobieczky (1999)

Eurocopter Airframe

Contour plot of skin friction for a fully turbulent (top) and transitional (bottom) Eurocopter airframe.

Iso-surface of turbulent flow (top) and surface value of intermittency (bottom) indicating the laminar (blue) and turbulent (red) regions on the Eurocopter airframe.

RGW Low Aspect Ratio Annular Compressor Cascade

From Menter/Langtry – Expt. Schulz & Gallus (1988)

Conclusions

- DNS very powerful tool for studying all details of transition of all kinds
 - natural, bypass, separated flow
 - very expensive, requires large computing resources
 - so far restricted to low Re (of fully turbulent flow) and simple geometries
- LES less expensive but still demanding
 - either near-DNS resolution near wall or suitable SGS model more testing necessary
 - not yet used in practice
- RANS methods approach used in practice
 - Without empirical transition correlations not sufficiently reliable
 - Methods using Re_{Θ} based correlations quite successful but not suitable for use in modern general CFD codes
 - New model based on local variables encouraging, needs more testing